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Development of quantum computers will soon provide a means of weakening or 

breaking many currently used encryption methods. ComScire’s1 new CryptoStrong 

random number generators2 provide the highest level of unpredictability and 

reliability available. The Model CS128M includes an entropy source provably 

surpassing the security of any other known generator, and cryptographic post 

processing comprising an AES-256 encryption module as defined by both NIST and 

the German AIS-20/31. Strong tamper resistance prevents reading or changing 

firmware and hardware design provides high resistance against side channel 

attacks. 
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PART 1: ENTROPY SOURCE. 
 

INTRODUCTION. 

 

Random number generators (RNGs) are intended to provide a source of unpredictable 

numbers or bits for a variety of important applications. These applications notably include 

generating keys for encrypting data and messages to prevent unauthorized access. For example, 

online financial transactions, information in the Cloud and government and military secret 

transmissions. In addition, random numbers form the basis of fairness for all lotteries and 

electronic “games of chance.” 

RNGs consist of two fundamental types: 1) pseudorandom generators, which use 

mathematical algorithms to provide numbers that simulate or give the appearance of randomness, 

and 2) true random number generators or nondeterministic generators, which require a physical 

source of entropy to produce actually unpredictable numbers. Pseudorandom generators must be 

seeded or initialized with a true random number. Nondeterministic generators are essential for 

every type of encryption and data security. 

Many applications of random numbers are critically important and even a partial failure of 

the RNG used could have catastrophic consequences. Users of these random numbers must be 

                                                           
a President of The Quantum World Corporation. swilber@coreinvention.com 
b Senior Engineer at The Quantum World Corporation.  
1 ComScire is a registered trademark owned by Core Invention, Inc. https://coreinvention.com/ 
2 Protected by multiple issued US patents. 

mailto:swilber@coreinvention.com
https://coreinvention.com/


2 

able to rely implicitly on their maximum cryptographic strength3. This means that every random 

bit must be independent identically distributed (i.i.d.) and uniformly distributed, making them 

absolutely unpredictable beyond chance expectations given unlimited computing power 

(including future quantum computers). Another way of stating this is that the entropy of a 

sequence of these bits is equal to the length of the sequence less an infinitesimal amount.4 NIST 

formerly defined “Full Entropy” as H = (1 – ε) per bit, where 0 ≤ ε ≤ 2-64 [SP 800-133]. In 

practice we are limited to finite sequence lengths for testing, so a more realistic, though less 

precise definition is, ‘a source of full-entropy bitstrings serves as a practical approximation to a 

source of ideal random bitstrings of the same length’ [SP 800-90A1]. 

The entropy sources in the PureQuantum® QRNGs sold by ComScire are described in 

extensive detail by Wilber [Wil13]. They comprise both classical, primarily thermal and shot 

noise sources, and quantum mechanical sources produced by quantum tunneling in the CMOS 

transistors. The magnitude of the noise sampled from these sources is modeled and measured to 

allow accurate calculation of the resultant entropy. The entropy source in the CS128M is the 

same as in the PureQuantum models – although somewhat expanded – with small adjustments 

due to 1.1V versus 1.2V core operating voltage and feature dimensions of 28nm versus 65nm of 

the Cyclone VE and Cyclone III Field-Programmable Gate Array (FPGA) families respectively.5  

These entropy sources have been extensively tested for years in commercial products, 

including continuous tests of individual sources amounting to hundreds of trillions of bits. They 

use no postprocessing so the tests revealed the fundamental quality of the raw output of the 

entropy sources. Testing to hundreds of terabits would have revealed statistical defects on the 

order of 0.0000001 (100 parts per billion). No defects were observed. 

 

ENTROPY SOURCES AND THE EFFECT OF POST-PROCESSING. 

 

Virtually all previously described entropy sources (except in ComScire’s PureQuantum® 

generators) have significant statistical defects and a corresponding reduction of total entropy. In 

order to satisfy the statistical requirements for modern TRNGs, their output sequences are 

“whitened” by passing imperfect random numbers through a cryptographic hash function. This 

has the effect of greatly improving their statistical properties. 

Conditioning a TRNG sequence having deficient entropy does not necessarily make it 

entirely unpredictable, especially if post-processing methods are also used to extend or increase 

the number of output numbers relative to the number of bits of entropy provided to the input. The 

output numbers are extended using a deterministic algorithm that is periodically reseeded by the 

true entropy source. The amount of true entropy per output bit is equal to the number of bits of 

entropy input to the algorithm divided by the number of output bits. 

                                                           
3 Cryptographic Strength is related to the number of operations a computer must use to break the encryption to 

reveal plain text. It depends primarily on the number of bits of entropy in the key, but also on the encryption method 

and the type of computer – classical or quantum mechanical. 
4 An absolutely perfect random sequence is theoretically impossible to generate, but it is possible to approach that 

ideal arbitrarily closely, as shown in this paper. 
5 Cyclone V and Cyclone III are FPGA family names of Intel Corporation. These were formerly made by Altera 

Corporation, which was acquired by Intel in Dec. 2015. 
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Statistical tests alone cannot easily quantify the amount of physical or true entropy used to 

produce random output sequences. Output sequences are predominantly pseudorandom when 

they have been greatly extended using deterministic post-processing. Such sequences are 

currently beyond the ability of most brute-force attacks, but they are theoretically vulnerable to 

attack by a sufficiently advanced quantum computer. 

The ideal entropy source must provide sequences that are provably unpredictable, given any 

realistic length of previous bits and unlimited computational power. In addition, the ideal source 

should provide entropy at a rate high enough to remove the need to algorithmically extend the 

output sequence. The combination of ideal entropy source and cryptographic post-processing 

results in maximum possible cryptographic strength, even when attacked by arbitrarily advanced 

quantum computers. 

 

ENTROPY FROM VARIOUS SOURCES. 

 

Two broad types of noise in the production and measurement of entropy are extrinsic and 

intrinsic. Extrinsic sources are not directly part of the generator entropy source and are coupled 

to the source by electromagnetic fields, power supply variations or even mechanical vibrations. 

Extrinsic noise must not be relied on as an entropy source in a secure random number generator 

system because of the potential to observe and even inject patterns into the generator circuit. 

Intrinsic sources are inherent in the generator source and arise from fundamental physical 

principles. Intrinsic sources in transistors and integrated circuits include shot noise from 

diffusion and tunneling currents, thermal or Johnson noise, flicker or 1/f noise and generation-

recombination noise. Intrinsic noise is chaotic and nondeterministic. Most extrinsic sources can 

be eliminated or greatly reduced by proper design and shielding of the generator, while intrinsic 

sources are usually not reducible below their theoretical value. 

The design presented in this paper requires measurements of the entropy from the sources 

being used. Most modern digital ICs are constructed using MOS transistors in a complementary 

or CMOS configuration. The entropy produced in gates constructed from these transistors is 

measurable by detecting variations in transition times that produce jitter in an oscillating signal 

passing through them. This is done by latching the state of a free-running ring oscillator (RO) 

with an independent clock signal. A ring oscillator is a multi-stage delay line containing an odd 

number of inverting gates with its output connected to its input. Each gate in the ring oscillator 

adds a certain amount of jitter to the signal transition as it passes through. The statistical 

distribution of jitter due to intrinsic sources is approximately normally distributed, and the total 

cumulative jitter from these sources is the jitter introduced by a single stage multiplied by the 

square root of the number of stages the transition has passed through before being measured. 

 

DEFINITIONS OF SYMBOLS. 

 

ε is the deviation from ideal entropy, ε = 1 – H. 

EP is the deviation from ideal predictability, EP = P – 0.5 

𝑓𝑟𝑖𝑛𝑔 is the oscillation frequency of a ring oscillator, 𝑓𝑟𝑖𝑛𝑔 = 1 (2 𝑛𝑙𝑢𝑡 𝜏𝑝)⁄  Hz. 

H is entropy. 
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ℎ−1 is the mathematical inverse of the entropy equation. 

HP is entropy as a function of P, 𝐻𝑃 = −(𝑃𝐿𝑜𝑔2𝑃 + (1 − 𝑃)𝐿𝑜𝑔2(1 − 𝑃)) bits. 

HT is total entropy produced by combining a number of entropic sources or numbers. 

𝐽𝐹 is the fractional jitter in a ring oscillator, 𝐽𝐹 = 𝑓𝑟𝑖𝑛𝑔 𝐽𝐿𝑈𝑇 √2𝑛𝑙𝑢𝑡 rms. 

JLUT is the rms jitter caused by a single LUT. 

n is the number of entropic bits to be combined. 

N is the number of bits in a sequence. 

𝑛𝑙𝑢𝑡 is the number of LUTs composing a ring oscillator. 

p(x) is the probability of x occurring. 

P is predictability – the probability of correctly predicting or guessing the next bit in a sequence. 

PC is combined predictability, 𝑃𝐶 = (𝑃𝐹𝑃 + 1)/2. 

PF is fractional predictability, PF  = 2P – 1. 

PFI is the fractional predictability of independent bits to be combined. 

PFP is the product of two or more fractional predictabilities. 

PFR is the resultant fractional predictability, 𝑃𝐹𝑅 = 𝑃𝐹𝐼
𝑛 . 

PN is the maximum next bit predictability given an N-bit sequence, 𝑃𝑁 ≤ ½ + √𝑁 × (𝑃 − ½). 

RO is a ring oscillator. 

𝜏𝑝  is the propagation delay through a single LUT or gate, 𝜏𝑝  =  1/(2 𝑛𝑙𝑢𝑡  𝑓𝑟𝑖𝑛𝑔) s. 

 

COMBINING BITS OF ENTROPY. 

 

Entropy and predictability are terms with different meanings in different fields. Shannon 

entropy [Sha48] is defined for the binary case when only 1 or 0 may be produced as, 𝐻 =

−(𝑝(1)𝐿𝑜𝑔2𝑝(1) + 𝑝(0)𝐿𝑜𝑔2𝑝(0)), where p(1) and p(0) are the probabilities of a one and a 

zero occurring respectively and 𝐿𝑜𝑔2 is the logarithm in base 2; used when entropy is quantified 

in bits. For this discussion, p(1) is replaced by predictability, P, defined as the probability of 

correctly guessing the next bit in a sequence, and p(0) is replaced by 1−P, where 0.5 ≤ 𝑃 ≤ 1.0. 

Substituting predictability for the probabilities, entropy as a function of P is defined, 𝐻𝑃 =

−(𝑃𝐿𝑜𝑔2𝑃 + (1 − 𝑃)𝐿𝑜𝑔2(1 − 𝑃)). When the value of H is measured or theoretically 

calculable, 𝑃 = ℎ−1, where ℎ−1 is the mathematical inverse of the entropy equation. The inverse 

is normally performed numerically since there appears to be no closed-form equation for it. The 

inverse of the entropy equation has two solutions, but only the one where 𝑃 ≥ 0.5 is used. 

It is essential to be able to calculate the precise levels of entropy or predictability of bits 

combined by XOring them together6. The predictability of each bit is converted to fractional 

predictability, 𝑃𝐹 = 2𝑃 − 1. The fractional predictabilities of each of the original bits are then 

multiplied to produce their product, 𝑃𝐹𝑃, and the combined predictability, 𝑃𝐶 is finally 

calculated, 𝑃𝐶 = (𝑃𝐹𝑃 + 1)/2. The combined or total entropy, HT, is calculated using the 

equation for HP = f(PC). 

                                                           
6 The XOR function, or equivalently the parity function when more than two bits are combined, is used because it 

was proven to be the most efficient algorithm for improving the randomness properties when combining imperfect 

random sequences [San86], and because its effect on combining entropy sources has been determined by the 

research underlying this paper and elsewhere [Dav02]. 
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PHYSICAL MEASUREMENTS AND TOTAL ENTROPY CALCULATION. 

 

An Intel Field-Programmable Gate Array (FPGA) was selected for the CryptoStrong Model 

CS128M design. A number of measurements and tests were performed using several 

5CEFA4U19C8N FPGAs to determine the variables required in the entropy model. 

The propagation delay, 𝜏𝑝, through a single LUT or FPGA “gate” is found by measuring the 

average frequency of several ring oscillators and calculating 𝜏𝑝  =  1/(2 𝑛𝑙𝑢𝑡  𝑓𝑟𝑖𝑛𝑔), where 𝑛𝑙𝑢𝑡 

is the number of LUT’s in the ring and 𝑓𝑟𝑖𝑛𝑔 is the frequency of oscillation. Six physically 

independent ring oscillators were programmed using 11 non-inverting gates and one inverting 

gate, arranged in single logic blocks to minimize variations between rings. The average 

measured ring oscillator frequency was, 𝑓𝑟𝑖𝑛𝑔
̅̅ ̅̅ ̅̅  = 198.4±7.1MHz (±1 SD), giving a propagation 

delay of 𝜏𝑝 =  210.0 ± 7.45 ps. 

The entropy source includes three independent but otherwise identical sources, which are 

combined into one final source. An offline diagnostics mode can provide raw data from a 

number of internal test points for external testing. These test points are designated levels 1, 2 and 

3, representing three levels in the combination of multiple ring oscillator measurements. Each 

level includes three different source test points to allow representative statistical measurements 

throughout the entropy source. 

The level 1 test outputs are produced by XOring signal taps from pairs of ring oscillators, 

each RO having different numbers of LUTs and signal taps, and latching the XOred outputs with 

a 128 MHz clock. The three available level 1 outputs from two FPGAs were measured to 

produce a mean entropy7 of, H = 0.8670525 with corresponding P = 0.7112873 and PR = 

0.4225746. Programs 1a-c in Appendix II give the relationships between oscillator jitter, 

predictability and entropy. Each pair of rings was fully modeled and solved backward 

numerically giving the single LUT jitter with a geometric mean value of, JLUT = 34.066353 ps 

rms. 

Level 2 test outputs are produced by XOring 15-level 1 outputs. Six measurements from two 

FPGAs gave a mean entropy, H = 1 – ε, where ε = 5.151157 x 10-11, with corresponding P = 

0.500004225233 and PR = 8.450466 x 10-6. Numerical solution gives the mean single-LUT jitter, 

JLUT = 30.91735 ps rms. 

The weighted geometric mean of level 1 & 2 measurements gives, JLUT = 31.34873 ps rms. 

This value was used in a model of the average level 2 output (taking the average number of RO 

LUTs and taps) From this the averages used throughout the model were calculated: Average 

PR/tap = 0.84667378, P/tap = 0.9233368 and H/tap = 0.3903111. The algebraic average number 

of taps/ring = 2.333333 and the geometric mean of LUTs/ring, nlut = 9.528536 adjusted to 

9.4765952 for internal consistency9. 

 

                                                           
7 Entropy is a nonlinear variable so its mean is calculated using the geometric mean of the associated relative 

predictabilities. Details are described in Appendix I. 
8 The average level 2 output is produced from 70 taps and the single tap PR is the 70th root of the total PR. 
9 The geometric mean of nlut is 9.5285357. A slight adjustment (a reduction of about 0.5483%) was determined 

numerically. 
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Calculating Total Entropy. 

 

The following steps use the measurements and physical design to calculate the total entropy from 

the entropy source in the CS128M. The average number of LUTs in the ring oscillators 

comprising the entropy source, nlut, and the geometric mean of the number of signal taps in the 

rings are used to simplify the calculations. 

 

• Mean oscillator frequency with nlut = 9.4762952 and 𝜏𝑝 = 210.0 ps yields a mean ring 

oscillator frequency, 𝑓𝑟𝑖𝑛𝑔 = 1 (2 𝑛𝑙𝑢𝑡 𝜏𝑝)⁄ = 251.254 MHz. 

• JLUT = 31.34873 ps rms: the weighted geometric mean from all statistical measurements. 

• Ring oscillator fractional jitter, 𝐽𝐹 = 𝑓𝑟𝑖𝑛𝑔 𝐽𝐿𝑈𝑇 √2𝑛𝑙𝑢𝑡 = 0.03428991 rms. 

• Entropy per sampled tap calculated numerically = 0.3903111 

• Predictability per tap is, P = h-1 = 0.9233368 and PFI = 2P – 1 = 0.8466737. 

• Each ring provides an average of 2.33333 signal taps per ring times 2 rings XORed 

together gives 4.66667 taps per sample (each average level 1 output). This is multiplied 

by 15 samples from 15 pairs of ring oscillators. One level 2 output is thus produced from 

n = 70 mean samples per bit at 128 MHz sample rate. 

• The resultant fractional predictability at level 2 is, 𝑃𝐹𝑅 = 𝑃𝐹𝐼
𝑛 =  0.846673770 =

8.712141 × 10−6. PC = (8.712141×10-6 + 1)/2 = 0.500004356070. The average entropy 

for each level 2 output is 1.0 – ε, where ε = 5.47512 x 10-11. 

• The next internal test level (level 3) results from XORing 32 independent level 2 outputs 

yielding, 𝑃𝐹𝑅 = 𝑃𝐹𝐼
𝑛 =  0.84667372240 = 1.213377 × 10−162 and PC = (1.21337×10-162 

+1)/2 = 0.5 + 6.066887×10-163. The entropy at this level is, H = 1– ε where ε 

=1.06203×10-324. 

• The final output of the entropy source is the result of XORing the three level 3 outputs to 

produce each final output bit at 128 Mbps. This produces 𝑃𝐹𝑅 = 𝑃𝐹𝐼
𝑛 =

 0.84667376720 = 1.213377 × 10−486 and PC = (1.7864372×10-486 +1)/2 = 0.5 + 

8.9321861×10-487. The theoretical total entropy at the final output of the entropy source 

is, HT = 1– ε where ε = 2.3021×10-972. The fractional defect in other statistics is on the 

order of 9 x ×10-487, which makes the output indistinguishable from a sequence of 

perfectly random bits. 

 

In most of these calculations, the precision is reported as 6 or more digits. These digits are 

presented for calculation purposes while the actual accuracy may be considerably less. For 

example, the measured 𝑓𝑟𝑖𝑛𝑔
̅̅ ̅̅ ̅̅  was reported as 198.4MHz. However, the calculated standard 

deviation was 7.1MHz so the accuracy is more correctly 198.4 ±7.1MHz or ± 3.6%. 

 

DISCUSSION. 

 

The entropy and size of statistical defects in previous random number generators and entropy 

sources could not be qualified beyond what could be directly tested using statistical tests. This 

was primarily due to a lack of knowledge of how to generate random numbers with a precisely 
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quantifiable amount of entropy [Sar19]. To overcome previous limitations requires a deep 

understanding of physical entropy sources and how to measure them, and a clear and complete 

model for using the measured output to achieve any desired level of entropy and statistical defect 

in an output sequence.  

Design equations and specific practical designs for simple, inexpensive yet highest quality 

nondeterministic random generators are presented. The design is implemented in CMOS 

integrated circuits, but the principles may be applied to random number generators of virtually 

any design or entropy source. NIST formerly defined “full entropy” as H = (1 – ε) bits per bit, 

where 0 ≤ ε ≤ 2-64 [SP 800-90C, p. 4], that is, ε ≤ 5.421×10-20. The entropy source described here 

not only meets, but vastly surpasses that requirement without any type of post processing, 

conditioning or randomness correction. 

The deviation of predictability above the ideal value of 0.5 is EP = P – ½. EP is also the 

approximate level of statistical defects in the sequence. About 1 𝑥2⁄  bits must be tested to 

observe a statistical defect in a sequence with x = EP. A major result of the model is to show it is 

possible to generate and qualify random sequences whose statistical defects are too small to be 

detected by direct testing. 

Generators constructed following the design rules in this paper can produce sequences 

indistinguishable from an ideal nondeterministic sequence – beyond the capability of any 

theoretical quantum computer to predict beyond chance. The entropy source described in this 

paper has a theoretical EP of about 8.9×10-487. Photonic or other common quantum generators 

cannot begin to approach that level of nondeterminism due to inherent limitations in the entropy 

measuring components. 

The German Federal Office for Information Security (BSI) requires an entropy source of 

only H ≥ 0.997, giving P ≤ 0.53223. These numbers may be passed through a cryptographic hash 

function to correct their entropy deficit and make them unpredictable. However, a hash function 

is a deterministic algorithm, usually of open design. Knowing the raw random numbers have 

significant predictability may allow a future quantum computer with virtually unlimited 

computational power to crack the hash with some form of collision or brute force attack (See 

Cimpanu [Cim19] as a suggestive example.). 

The entropy source in the CS128M produces raw bits with effectively perfect entropy and 

unpredictability. That is the best possible solution to resist threats arising in the post-quantum 

age. 
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Appendix I – Entropy Model Equations. 

 

This section provides a number of equations and direct tests demonstrating the basis of the 

entropy model used to design ComScire’s PureQuantum® QRNG models and the entropy source 

in the Model CS128M CryptoStrong™ generator. The model demonstrates how to combine a 

number of measurements of a physical entropy source or sources to achieve desired levels of 

entropy and predictability. 

 

The fundamental relations of the model are: 

 

1) Shannon entropy, H, for a binary sequence with an alphabet [0, 1] is 𝐻 =

−(𝑝(1)𝐿𝑜𝑔2𝑝(1) + 𝑝(0)𝐿𝑜𝑔2𝑝(0)), where p(1) and p(0) are the probabilities of a one or 

a zero occurring respectively, and 𝐿𝑜𝑔2 is the logarithm in base 2; used when entropy is 

quantified in bits. This equation is a function of only one independent variable since p(0) 

= 1 – p(1). For this discussion, p(1) is replaced with predictability, P – defined as the 

probability of correctly predicting the next bit in a sequence – and p(0) is replaced by 

1−P, where 0.5 ≤ 𝑃 ≤ 1.0. After substituting predictability for the probabilities, entropy 

as a function of P is 𝐻𝑃 ≅ −(𝑃𝐿𝑜𝑔2𝑃 + (1 − 𝑃)𝐿𝑜𝑔2(1 − 𝑃)). This equation becomes 

progressively more accurate as ε, deviation from the ideal HP = 1.0, becomes very small. 

2) Predictability, P, and entropy, H of a sequence10 of true random numbers are two related 

representations of its randomness. Each variable may be mathematically transformed into the 

other. When H is measurable or theoretically calculable, P may be calculated as 𝑃 = ℎ−1, 

where ℎ−1 is the mathematical inverse of the entropy equation. The inverse is performed 

numerically (see Appendix II) since there appears to be no closed-form solution; 

however, see the approximations below. The inverse of the entropy equation has two 

solutions, but only 𝑃 ≥ 0.5 is used. 

3) Entropy can be measured statistically with reasonable accuracy using, for example, an 

update of Maurer's “Universal Test” [Cor99], without prior knowledge of the various 

statistical defects that may be present in the sequence being tested. From these 

measurements the effective predictability can be calculated. 

The following approximations for HP, P, ε and EP have been found11: 

a) 𝐻𝑃 ≅ 1 − (2 ln2⁄ )(𝑃 − ½)2 

b) 𝑃 ≅ ½ + √ln 2 2⁄  √1 − 𝐻𝑃 

c) 𝜀 ≅ (2 ln2⁄ )𝐸𝑃
2 

d) 𝐸𝑃 ≅ √ln 2 2⁄  √𝜀 

These approximations conveniently allow HP and P to be calculated with high accuracy and 

without the use of extended precision when HP and P are only moderately close to 1.0 and 0.5 

respectively.  

HP is an exact function of P when bias in the counts of 1s and 0s is the only statistical 

defect.12. However, HP is decreased by the presence of any patterns or statistical defects. The 

                                                           
10 For uniformity throughout Part 1 of the paper, H refers to the value on a per-bit basis. This applies when either 

bits or sequences are mentioned. The number of bits of entropy in a sequence of length n is simply n H or n – n ε. 
11 Their derivation is omitted for brevity, but their accuracy is easily confirmed. 
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decrease in HP from its ideal value of 1.0 is ε = 1 – HP. The approximation for ε shows it 

decreases as the square of the deviation of P from its ideal value of 0.5. A significant defect in P 

of 0.0001, i.e., P = 0.5001, gives ε = 2.88539 x 10-8. It was shown elsewhere the mathematical 

distance from a uniform distribution of a sequence decreases slowly as ε decreases [Skó15]. The 

approximation for EP reveals it decreases as the square root of ε. 

4) Relative predictability, PR, is defined as 𝑃𝑅 = 2𝑃 − 1. When independent bits are XOred 

together, the relative predictability of the resultant sequence of bits, PFR, is the product of 

the relative predictabilities of the initial bits. The resultant entropy is easily calculated 

using the equation for HP after calculating P = (PFR + 1)/2. Or, the entropy may be 

measured statistically if ε is not too small. 

When there is significant dependence between the XOred bits, usually in the form of 

autocorrelation between bits measured from a single entropy source, the entropy of the 

resultant sequence is reduced by the mutual information. A statistical measurement is 

necessary to provide an accurate assessment of the entropy when such dependence is 

present. Good agreement between statistical measurements and the calculated HP 

indicates the bits are sufficiently independent. 

5) A supplemental algorithm is derived from the preceding. The mean of n entropy 

measurements is calculated by: 

a) Converting each entropy to relative predictability, PR, 

b) Finding the geometric mean (the nth root of their product) of all PRs, 

c) Converting the mean PR to P, 

d) Using P to calculate the mean entropy. 

6) PN is the maximum next bit predictability given a previous sequence of length N bits with 

single bit predictability, P. This expression was developed from a study of random walk 

statistics [Ste01]. In equations describing a one-dimensional random walk, the 

probabilities of a 1 or a 0 occurring were replaced by predictability, P and 1 – P 

respectively. A fundamental derived relation is, 𝑁 =
2𝑃𝑁−1

2𝑃−1
ln

1−𝑃𝑁

𝑃𝑛
/ ln

1−𝑃

𝑃
, where N is 

the average number of bits that must be used in a random walk to produce a bit with 

predictability, PN, and PRN is the relative predictability of the next bit. Using the fact that 

ln
1−𝑃

𝑃
≅ −2𝑃𝑅 when 𝑃𝑅 ≪ 1, 𝑁 ≅

𝑃𝑅𝑁

𝑃𝑅

−2𝑃𝑅𝑁

−2𝑃𝑅
, which simplifies to, 𝑁 ≅ [

𝑃𝑅𝑁

𝑃𝑅
]

2

. 

Solving, 𝑃𝑅𝑁 ≅ √𝑁𝑃𝑅. Substituting 𝑃𝑅𝑁 = 2𝑃𝑁 − 1 and 𝑃𝑅 = 2𝑃 − 1 and simplifying 

yields 𝑃𝑁 ≅ ½ + √𝑁 × (𝑃 − ½). An alternate derivation gives, 𝑃𝑁 ≤

1 (1 + ((1 − 𝑃) 𝑃⁄ )𝑛)⁄ , where 𝑛 ≅ √𝑁. The accuracy of the approximation is > 8 digits 

when P ≤ 0.50001, and becomes more accurate as P → 0.5.  

                                                                                                                                                                                           
12 Bias, the ratio of 1s to total bits, is by definition p(1) and p(0) = 1 – p(1). Hence, Shannon entropy is exact when 

only bias is present. If the bits are biased but independent, an iterated procedure [Per92], originally due to Von 

Neumann, can be used to extract unbiased bits with entropy approaching the total entropy in the original sequence. 

This procedure fails when any other form of statistical defect is present. 
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Appendix II – Programs. 

 

US Pat. no. 6,862,605, [Wil05] discusses how to calculate the entropy of a sampled 

oscillatory signal given rms jitter as a fraction of the oscillatory signal period. (See also: 

[Sun07]). The entropy is calculated numerically by first calculating the average probability of 

correctly predicting the next sampled value of the oscillator signal, P, and then using Shannon’s 

entropy equation modified to use the single variable, P. The fractional jitter must be adjusted to 

an effective jitter, 𝐽𝐸 = 𝐽𝐹√𝑓𝑜𝑠𝑐/𝑓𝑠𝑎𝑚𝑝, where 𝑓𝑜𝑠𝑐 is the ring oscillator frequency and 𝑓𝑠𝑎𝑚𝑝 is 

the sampling frequency. This adjustment accounts for the fact the effective cumulative jitter at 

each sample time is that jitter which accumulates since the previous sample. The following 

Mathematica13 programs perform the required numerical calculations: 

 

prob[mu_, rho_]:=Sum[CDF[NormalDistribution[mu, rho], x+1/2] Program 1a 

CDF[NormalDistribution[mu, rho], x], {x, -Round[6 rho], Round[6 rho]}] 

avgprob[rho_, hf_, lf_]:=(ro=rho Sqrt[hf/lf]; divisions=Max[1000, Ceiling[5/ro]]; Program 1b 

If[ro>.9, .5, N[2Sum[prob[mu, ro], {mu, 0, 1/2, 1/(4divisions)}]/(2divisions+1)- 

Sum[prob[mu, ro], {mu, 0, 1/2, 1/(2divisions)}]/(divisions+1)]]) 

H[rho_, hf_, lf_]:=(apr=avgprob[rho, hf, lf]; Program 1c 

(-1/Log[2])(apr Log[apr]+(1-apr)(Log[1-apr]))) 

 

The function H[rho_, hf_, lf_] calculates entropy, where the arguments, rho, hf and lf are the 

fractional jitter, JF, and the ring oscillator and sampling frequencies respectively, mu = 0.0. The 

function avgprob[rho_, hf_, lf_] calculates the average predictability, P. When the fractional 

jitter gets smaller the number of divisions used in the function avgprob is automatically 

increased. 5/JE divisions rounded up to the next higher integer will yield about three significant 

digits of accuracy for JE down to 0.00001. 

The precision of most programming languages cannot represent the numbers in these 

calculations. When necessary, both entropy and its inverse were conveniently calculated in 

Mathematica using extended precision up to 1000 digits.  

  

                                                           
13 From Wolfram Research. 
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Appendix III – Error Analysis. 

 

Values of some parameters are calculated from measurements which may be in error, or 

change over time, temperature, supply voltage and chip-to-chip process variations. Errors in 

these parameters will result in an increase or decrease in the entropy produced. For simplicity, 

only the values of ε are shown in the tables, where the total entropy is HT = 1 - ε. 

 

Table 1 shows the effect on total entropy (HT) in the output bits when using a wide range of 

ring oscillator frequency (fring) from a low of 80% to a high of 125% of the nominal value used in 

the paper. 

 

 

RO Frequency, fring Low (𝟎. 𝟖 ×) Nominal High (𝟏. 𝟐𝟓 ×) 

1 – HT: ε 1.69×10-678 2.30×10-972 7.15×10-1411 
 

Table 1 

 

Total entropy is calculated from the fractional jitter in the LUT output transitions, JLUT. Table 2 

shows the effect on total entropy of varying JLUT over a range of 0.5 to 2 times the value used in 

the paper. 

 

Transition Jitter, JLUT Low (½ ×) High (𝟐 ×) 

1 – HT: ε 1.18×10-465 8.79×10-2150 
 

Table 2 

 

Test level 2 entropy is both measured and calculated using the entropy model. Entropy is 

then used to calculate, EP = P – ½. Close agreement between measured and calculated values is 

significant validation of the model. Table 3 shows the effect on total output entropy of varying 

the level 2 EP from 0.5 to 2 times the nominal, calculated value. This is effectively the range 

spanned by the direct statistical measurement, shown for comparison. 

 

Level 2 EP Low (½ ×) Nominal High (𝟐 ×) 

Calculated EP 2.178×10-6 4.356×10-6 8.712×10-6 

Measured EP ±1SD 2.1×10-6 5.1×10-6 8.1×10-6 

Final Output ε  3.67×10-1030 2.30×10-972 1.44×10-914 
 

Table 3 

 

These three tables show the directly or indirectly measured variables used to calculate total 

entropy in the output of the Model CS128M described in this paper. When these variables are 

changed over a wide range, total entropy varies as shown. The ranges are believed to include 

worst-case values.  

The single worst-case result of ε = 1.17×10-465 indicates a statistical defect of 2.02×10-233 

would theoretically be present in the entropy source output sequence. This level of defect is 
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clearly not detectable by any known or theoretical means. Nor could an infinitely powerful 

quantum computer predict a next bit beyond chance (no better than ½ + 1.28 x 10-225)14 given a 

previous sequence of 4 Pb (petabits) that would be generated in a full year at 128 Mbps. 

 

Functional Testing versus Operating Temperature. 

 

Table 4 shows the variation of the mean measured entropy at level 1 test points versus 

temperature of the FPGA. The temperature was measured with a thermocouple in direct contact 

with the middle of the FPGA heatsink. The accuracy of the temperature is approximately ± 2°C. 

The final ε was calculated from the inferred initial relative predictability, PFI, at each 

temperature. 

 
Measured Entropy Vs. Temperature 

T °C Level 1 H Final ε (Calc.) 

-40 0.858 1.01 10-1036 

-35 0.860 2.76 10-1045 

-30 0.864 2.53 10-1066 

0 0.862 5.02 10-1054 

10 0.833 1.10 10-940 

20 0.824 1.14 10-910 

32 0.802 1.78 10-875 

   40.5 0.755 4.71 10-716 

50 0.814 4.71 10-876 

60 0.890 2.46 10-1193 

65 0.897 1.21 10-1233 

80 0.887 1.99 10-1175 

90 0.836 1.69 10-951 
 

Table 4 

 

The temperature of the system board was varied from about –50 to +100°C. The generator 

system was fully functional at all times as indicated by continuously passing all internal tests and 

providing test data output. Entropy measurements were made from –40 to +90°C. All values are 

easily within the believed worst-case ranges of Tables 1 and 2. 

                                                           
14 Predictability of the next bit given a sequence of length N is found to be (see Appendix I), 𝑃 ≤ ½ + √𝑁 × 𝐸𝑃, 

where EP is the single bit predictability – ½. 
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PART 2: CRYPTOGRAPHIC DRBG POST-PROCESSING. 
 

INTRODUCTION. 

 

Part 2 is a step-by-step documentation describing the CryptoStrong™ Model CS128M RNG 

implementation to comply with NIST Special Publication SP 800-90C and BSI AIS 20/31 

guidelines for constructing random numbers. NIST SP 800-90C (2nd Draft), Recommendation for 

Random Bit Generator (RBG) Constructions, specifies RBG construction consisting of 

deterministic random bit generators (DRBG) mechanisms, as specified in NIST SP 800-90A, and 

entropy sources, as specified in SP 800-90B. Likewise, BSI AIS 20/31, Functionality Classes for 

Random Number Generators (RNG), describes the German Common Criteria (CC) for 

implementing RNGs grouped in specific hierarchal classes which may consist of a physical RNG 

(PTRNG) and a deterministic RNG (DRNG). 

The following definitions clarify and compare the terminology used by NIST and the 

German BSI: 

 

NIST Terminology. 

 

Random Bit Generator (RBG): A device or algorithm that is capable of producing a random 

sequence of (what are effectively indistinguishable from) statistically independent and unbiased 

bits. An RBG is classified as either a DRBG or an NRBG. 

Non-deterministic Random Bit Generator (NRBG): An RBG that always has access to an 

entropy source and (when working properly) produces output bit strings that have full entropy. 

Often called a True Random Number (or Bit) Generator. 

Deterministic Random Bit Generator (DRBG): An RBG that includes a DRBG mechanism 

and (at least initially) has access to a randomness source. The DRBG produces a sequence of bits 

from a secret initial value called a seed, along with other possible inputs. A DRBG is often called 

a Pseudorandom Bit (or Number) Generator. 

Backtracking Resistance: A property whereby an attacker with knowledge of the state of the 

RBG at some time(s) subsequent to time T would be unable to distinguish between observations 

of ideal random bit strings and (previously unseen) bit strings that are output by the RBG at or 

prior to time T. 

Prediction Resistance: A property whereby an adversary with knowledge of the state of the 

RBG at some time(s) prior to T (but incapable of performing work that matches the claimed 

security strength of the RBG) would be unable to distinguish between observations of ideal 

random bitstrings and (previously unseen) bitstrings output by the RBG at or subsequent to time 

T. 

 

BSI Terminology. 

 

Random Number Generator (RNG): A group of components or an algorithm that outputs 

sequences of discrete values (usually represented as bit strings). 



14 

Physical RNG (PTRNG): A RNG where dedicated hardware serves as an entropy source. 

NOTE: we use the short term “physical RNG” for physical true RNG as well because all 

physical RNG are true RNG by definition. We use the abbreviation “PTRNG” instead of 

“PRNG” to avoid confusion with pseudorandom generators. 

Deterministic RNG (DRNG): An RNG that produces random numbers by applying a 

deterministic algorithm to a randomly selected seed and, possibly, on additional external inputs. 

Hybrid PTRNG: A PTRNG with a (complex) post-processing algorithm. The goal of 

(sometimes additional) cryptographic post-processing with memory is to increase the 

computational complexity of the output sequence. NOTE: A complex algorithmic post-

processing algorithm may be viewed as an additional security anchor for the case when the 

entropy per output bit is smaller than assumed. 

Backward secrecy: The assurance that previous output values cannot be determined (i.e., 

computed or guessed with non-negligible probability) from the current or future output values. 

Forward secrecy: The assurance that subsequent (future) values cannot be determined (i.e., 

computed or guessed with non-negligible probability) from current or previous output values. 

Enhanced Backward Secrecy: The assurance that previous output values of a DRNG cannot 

be determined (i.e., computed or guessed with non-negligible probability) from the current 

internal state, or from current or future output values. NOTE: The knowledge of the current state 

of a pure DRNG (with no additional input or with publicly known input) implies knowledge of 

the current and future output. 

Enhanced Forward Secrecy: The assurance that subsequent (future) values of a DRNG 

cannot be determined (i.e., computed or guessed with non-negligible probability) from the 

current internal state, or from current or previous output values. NOTE: The enhanced forward 

secrecy may be ensured by reseeding or refreshing the DRNG internal state, which may be 

performed automatically or initiated on user demand. 

 

NIST-BSI Terminology Cross Reference. 

 

RBG = RNG 

NRBG = PTRNG or Hybrid PTRNG 

DRBG = DRNG 

Backtracking Resistance = Enhanced Backward Secrecy  

Prediction Resistance = Enhanced Forward Secrecy 

 

CS128M IMPLEMENTATION DETAILS 

 

1. CS128M Construction. 

 

The cryptographically strong random number generator CS128M is AIS 20/31 Class PTG.3-

compliant Hybrid PTRNG, or SP 800-90C-compliant NRBG as defined by NIST. The AIS 20/31 

Class PTG.3 was selected to guarantee the highest RNG security level as defined by AIS 20/31. 

In pursuance of complying with both standards, the NIST SP 800-90C XOR-NRBG construction 
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was selected in order to be compliant with NIST’s RBG construction recommendations and 

satisfy AIS 20/31 Class PTG.3 requirements. 

 

The construction includes: 

1) Entropy source model as defined by SP 800-90B and AIS 20/31. 

2) Health tests in accordance with SP 800-90[A/B] and AIS 20/31 standards. 

3) An approved SP 800-90A DRNG method that is also AIS 20/31 DRG.3 compliant. 

 

Entropy Source 

Noise 

Sources 

Health 

Test 

Buffer:  

Entropy Pool 

DRNG 

Memory:  

Internal State 

Known-

answer Test  

CTR_DRBG:  

AES-256 

RNG Control Unit  

&  

Health Tests 

Full Entropy 

Figure 1: CS128M RNG Construction Model 

RNG output 
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2. CS128M Entropy Source. 

 

The CS128M entropy source is modeled in accordance with both standards (See Part 1 for 

an in-depth description of the entropy source model and entropy estimation). The entropy source 

sub-boundary contains three redundant noise sources and a health test component. The health test 

component includes start-up tests and continuous tests on the noise sources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 NIST SP 800-90B Requirements. 

 

This section describes the steps taken to comply with NIST SP 800-90B recommendations 

for entropy sources. NIST SP 800-90B requires the following implementation: 

 

1) Entropy model validation. 

2) Health tests of the internal raw data. 

a. Continuous and start-up tests that meet NIST detection requirements. 

i. Both tests must run over at least 1024 consecutive samples. 

ii. Tests performed on noise sources before any conditioning or post-

processing. 

b. On-demand health tests. 

c. The source shall notify the consuming application and halt the output when health 

test fails. 

 

2.1.1 CS128M Entropy Source Model and Estimation. 

 

See Part 1 for a comprehensive description of the entropy source model and calculation. 

 

 

 

 

Entropy Source 

Entropy 

Source 1 

Health 

Tests 

Entropy 

Source 2 

Entropy 

Source 3 

stream output 

Figure 2: CS128M Entropy Source Sub-boundary 
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2.1.2 CS128M Entropy Source Health Tests Implementation. 

 

NIST provides two approved health tests: the Repetition Count Test and the Adaptive 

Proportion Test. NIST allows developer-defined tests that meet the requirements for a 

substitution of those approved tests. The goal of the Repetition Count Test is to quickly detect 

catastrophic failures that cause the noise source to be stuck on a single output. The Adaptive 

Proportion Test is designed to detect a large loss of entropy that might occur from the result of 

some physical failure or environmental change that affects the noise sources. 

Developer-defined alternative tests were implemented that meet the requirements of the 

NIST approved tests.  

1) The startup and continuous monitoring include 1/0 bias, 1st order autocorrelation and an 

estimated entropy of each of these three sources and the final output. 

a. At startup, random data will not be output until a block of 1,048,576 bits (220 bits) 

from at least two of the three redundant entropy sources has produced the required 

minimum estimated entropy level. 

b. Monitoring is continuously run for every subsequent block of 1,048,576 bits. 

2) In addition to the startup and continuous testing, the three independent entropy sources 

raw output data streams and the final combined raw output stream are made available on-

demand, offline for direct statistical testing. 

3) The 1/0 bias and 1st order autocorrelation tests detect total failure of each of these noise 

sources and final output stream. The internal hardware monitoring requires at least two of 

the three entropy sources to have estimated entropy of at least 0.999 bits/bit. If this 

requirement fails, the output from the RNG is automatically halted. Output bits are also 

tested for entropy, and the RNG will be halted if the output estimated entropy falls below 

0.999 bits/bit. 

 

2.2 AIS 20/31 PTG.3 Entropy Source Requirements. 

 

This section describes the steps taken to comply with AIS 20/31 PTG.3 requirements for 

entropy source. The class PTG.3 defines requirements for RNGs that must include PTG.1 and 

PTG.2 definitions with the addition of a cryptographic post-processing algorithm that is DRG.3-

conformant (discussed in Section 4.2.1). AIS 20/31 entropy source component requires: 

 

1) A stochastic model of the physical RNG that quantifies the distribution of random 

numbers.  

2) Total failure test of the entropy source. 

3) Online tests of raw random numbers and internal random numbers (conditioned). 

 

2.2.1 CS128M Stochastic Model. 

 

See Part 1 for an in-depth description of the entropy source model and estimation. 
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2.2.2 CS128M Entropy Source Internal Tests Implementation 

 

Section 2.1.2, CS128M Entropy Source Health Tests, describes the internal tests 

implemented to detect total failure of the entropy source raw numbers, and online tests that 

detect non-tolerable defects that may be affected by some physical failure or environmental 

change. The CS128M entropy source does not require any whitening or conditioning algorithms, 

therefore no conditioned random numbers are required to be tested. 

 

3. CS128M Entropy Pool. 

 

The entropy pool sub-boundary is a circular buffer implemented to transfer entropy from an 

approved entropy source to the DRNG and final RNG output. The entropy pool is accessed by 

the DRNG for seeding initialization/reseeding of its internal states, and accessed by the RNG for 

generating the final output by XORing 128 bits of fresh full entropy with the DRNG output 

cipher block (128 bits). The data fills on demand by either DRNG or final RNG XOR output 

request. During health test mode, the Known-Answer Test module of the DRNG sub-boundary 

will feed the entropy pool by injecting test vectors used to seed DRNG (RNG output is disabled 

during test mode). 

 

4. CS128M DRNG. 

 

The DRNG selected is the NIST approved block cipher DRBG mechanism in the counter 

mode, CTR_DRBG, using the approved cryptographic algorithm AES with security strength of 

256 bits (AES-256). The DRNG sub-boundary contains the secret internal states; the AES block 

cipher mechanism and a health test component, Known-Answer Test (KAT). 

 

 

 

4.1 NIST SP 800-90A Requirements. 

 

NIST provides a functional model of a DRBG. A DRBG shall implement an approved 

DRBG mechanism from SP 800-90A and at least one approved randomness source. The DRBG 

construction includes the following components: 

 

DRNG 

Memory:  

Internal State 

Known-

answer Test  

CTR_DRBG:  

AES-256 

Figure 3: CS128M DRNG Sub-boundary 
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1) Entropy Input source follows NIST 800-90B Recommendations.  

a. Entropy input and the seed shall be kept secret. 

b. The randomness source shall provide input that supports the security strength 

requested by the DRBG mechanism. 

2) Internal state. 

a. Memory of the DRBG and consists of all of the parameters, variables and other 

stored values that the DRBG mechanism uses or acts upon. 

b. The internal state contains both administrative data (e.g., the security strength) 

and data that is acted upon and/or modified during the generation of 

pseudorandom bits (i.e., the working state). 

3) DRBG Mechanism. 

a. The instantiate function acquires entropy input to create a seed from which the 

initial internal state is created. 

b. The generate function generates pseudorandom bits upon request, using the 

current internal state. 

c. The update function generates new internal state for the next output request. 

d. The reseed function acquires new entropy input and combines it with the current 

internal state to create a new seed and a new internal state. 

e. The uninstantiate function zeroizes (i.e., erases) the internal state. 

f. The health test function determines that the DRBG mechanism continues to 

function correctly. 

 

4.1.1 CS128M DRNG Entropy Input. 

 

The CS128M DRNG entropy input source follows NIST 800-90B Recommendations. The 

entropy source provides randomness that supports the security strength requested by the DRNG 

mechanism without any entropy conditioning, personalization string or additional input 

(derivation function). The entropy source input and the seed are always kept secret. (See Section 

2. CS128M Entropy Source) 

 

4.1.2 CS128M DRNG Internal State and Mechanism Implementation. 

 

The CS128M DRNG internal state and cryptographic mechanism were implemented to meet 

NIST 800-90A requirements as described below: 

 

1) CS128M CTR_DRBG DRNG uses the AES cryptographic primitive with security 

strength of 256 bits (AES-256) in counter mode.  

2) DRNG is instantiated with random input from the entropy source prior to output 

generation.  

3) DRNG is reseeded with fresh entropy from the entropy source a little over 15 times per 

second.  

4) The output rate (generate function) of the DRNG does not exceed its input data rate, for 

every 128 bits input, an output of 128 bits is generated. 
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5) Known-answer test (KAT) is implemented within the DRNG mechanism boundary.  

a. Testing is conducted on each DNRG function prior to the first use (at boot-up 

after initial entropy health test is passed) and immediately prior to each reseeding 

of the internal states (reseed flag triggers KAT, which is run before reseed 

function). The KAT is always run prior to reseeding the internal states to 

frequently ensure reliability of the output. 

b. If the DRNG fails the KAT, or a catastrophic error is detected during boot-up or 

normal operation, the DRNG enters an error state and output is halted. When in 

this error state, user intervention (power cycling of the device) is required to exit 

the error state, and the DRNG will re-instantiate before producing new output (as 

long as all health tests pass again).  

c. KAT test vectors used were acquired directly from NIST at 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-

program/random-number-generators. 

 

The DRNG has fixed parameters without the option for user input:  

 

Definitions for the CS128M CTR_DRBG AES-256 

Security Strength 256 

Input and output block length (blocklen) 128 

Key length (keylen) 256 

Seed Length (seedlen = blocklen + keylen) 384 

Min/Max entropy input length seedlen 

Number of bits per output 128 

Number of outputs between reseeds 

(reseed_interval) 

65536 

 

Table 5 

 

4.2  AIS 20/31 DRG.3-Compliant DRNG Requirements. 

 

The class DRG.3 defines requirements for deterministic RNGs. The DRG.3 functional 

security requirements are defined below: 

 

1) Initiated with random seed from a PTRNG of class PTG.2 as random source. 

2) DRNG provides forward secrecy. 

3) DRNG provides backward secrecy. 

4) DRNG provides enhanced backward secrecy. 

5) DRNG output rate cannot exceed input rate. 

6) Known-answer test of the cryptographic post-processing algorithm to detect whether the 

algorithm was implemented and/or continues to operate correctly. Random number 

output is not allowed if failure is detected. 

 

 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/random-number-generators
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/random-number-generators
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4.2.1 CS128M DRG.3-compliant DRNG Mechanism. 

 

The AIS 20/31 standard provides a list of suitable DRNG implementation examples such as 

the NIST SP 800-90A approved methods [AIS 20/31, pp. 120-129]. The selected NIST 

CTR_DRBG DRNG meets and exceeds the requirements of class DRG.3. 

 

1) The DRNG is initiated with an approved PTRNG of class PTG.2 as random source. See 

Section 2.2.1 for entropy source implementation. 

2) The NIST CTR_DRBG AES-256 DRNG’s inherited design provides backward and 

forward secrecy due to its one-way output function implementation. 

3) Enhanced backward secrecy as required by DRG.3 specifications is provided by selecting 

an approved NIST SP 800-90A DRBG such as the one implemented in the design. All 

DRBG mechanisms in the SP 800-90A Recommendation have been designed to provide 

backtracking resistance [SP 800-90A1, p. 23]. 

4) Although enhanced forward secrecy is not required by PTG.3 specifications, periodic 

reseeding of the internal states with fresh entropy was implemented to offer additional 

defense against attacks and hardening of the RNG design. The CS128M construction 

went beyond the minimum requirements of the PTG.3 specification by combining the 

PTG.3 class with a DRG.4-compliant DRNG. Note, implementing the DRNG as DRG.4-

compliant does not mean the DRNG output is ‘extended’ in this design. 

5) The output rate of our DRNG does not exceed the input rate, as specified by DRG.3 

requirements. 

6) KAT implemented to test the cryptographic post-processing algorithm (See Section 

4.1.2). 

7) Finally, the NIST XOR-NRBG construction XORs the DRNG output with fresh entropy 

for every output of the RNG, which offers the highest level of reliability and protection 

against attacks. 
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PART 3: VERIFICATION TESTING. 
 

1. ComScire QNGmeter Real-Time Tester   p. 23 

2. NIST Statistical Test Suite     p. 25 

3. NIST SP 800-90B Entropy Source Validation  p. 26 

4. BSI AIS 31 Statistical Test Suite    p. 29 

5. DIEHARD Battery of Tests     p. 30 
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ComScire QNGmeter: Continuous Random Number Tester. 

 

The ComScire QNGmeter is a continuous real-time statistical tester that uses five powerful 

and fundamentally different tests on the input data. Unlike other statistical test suites, it is 

designed to measure the quality of randomness of a continuous sequence of bits up to hundreds 

of terabits in length. The QNGmeter automatically performs metatests of subsequences, which 

would have to be done manually by other popular test suites. Every QNG Model CS128M is 

tested extensively after production and finally just before shipment using the QNGmeter test 

suite. 

 

The five tests are: 

 

1) 1/0 Balance – nominal expected value is p(1) = p(0) = 0.5. 

2) Auto Correlation - orders 1 through 32, nominal expected value is 0.5 for all orders. 

3) Entropy Test – nominal expected value is H = 1.0, an update of U. Maurer’s “Universal 

Test” [Cor99]. 

4) Serial Test - (Good, I. J, The serial test for sampling numbers and other tests for 

randomness, Proc. Camb. Philos. Soc. Vol. 49, 1953). 

5) OQSO – Overlapping-Quadruples-Sparse-Occupancy test, nominal expected value for the 

mean = 141909.47 and standard deviation (by simulation) = 294.656 (G. Marsaglia and 

A. Zaman, Computers Math. Applic., Vol. 26, No. 9, pp 1-10, 1993). 

 

The z-scores, p-values, and chi-square (metatest) p-values are presented for each test. In 

addition, current test run time information, such as Bits Tested, Elapsed Time, Throughput, and 

Bits Tested %, is displayed by the tester. Bits Tested is the total number of bits tested. Elapsed 

Time is the time from the start of the current test run. Throughput is the input data rate in bits per 

second. Bits Tested % is the percent of the total bits tested. This value might be less than 100% 

due to limited CPU resources. 

Each test uses blocks of data of varying lengths, depending on the specific test. The 1/0 

Balance and Auto Correlation tests use a block size of 65,536 bits. The Serial test has a block 

size of 262,144 bits. The Entropy test has 4,194,304 bits in a block. The OQSO test uses 

10,485,775 bits per block. 

A z-score is calculated for every test for each data-block. The z-scores are converted to 

probabilities with the assumption they are normally distributed. The z-scores of the 1/0 Balance, 

Auto Correlation and Serial tests and their associated p-values displayed are cumulative for all 

blocks. The z-scores of the Entropy and OQSO tests are combined by summing the z-scores of 

all blocks and dividing by the square root of the number of blocks, respectively. 

A second level of testing is applied to the p-values calculated from the z-scores for each 

block of data. The z-scores are expected to be normally distributed and their associated p-values 

are expected to be uniformly distributed. A chi-square test is applied to the individual p-values 

from each of the five tests. The chi-square tests are cumulative and their results are displayed as 

probabilities. If these chi-square p-values converge to 0.0 or 1.0 for any test, the assumption of 

randomness fails, indicating non-random patterns in the data being tested. 

A third level of testing is applied to all of the individual chi-squared tests. A Kolmogorov-

Smirnov (KS) test is first applied to the probabilities of chi-squared results of all orders of auto 

correlation being tested to reduce the auto correlation results to a single probability. A meta-meta 
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KS test is finally calculated using the auto correlation KS result and the probabilities of the chi-

squared metatest results of all the other tests. The meta-meta KS+ and KS- probabilities are 

displayed. Convergence toward 1.0 or 0.0 indicates failure. 

 

For the hardware validation report, the QNGmeter tests were completed on a QNG Model 

CS128M using 195 trillion random bits. All metatest results for the device are recorded in the 

following Table 6. 

 

 

ComScire QNGmeter 195 Trillion Bits Tested 

Testing QNG Device S/N QWR80001 

Run Time Information Autocorrelation 

Bits Tested 195E+12 Order p (χ2 ≤ x) 

Time Elapsed 42:02:01:19 1 0.404578 

Throughput 128E+6 2 0.093446 

Meter 45.5+ 3 0.032575 

1/0 Balance 4 0.935301 

p (1) 0.5000000152 5 0.407691 

p (z ≤ x) 0.663959 6 0.460052 

p (χ2 ≤ x) 0.786957 7 0.514645 

Entropy Test 8 0.913443 

H 1.0000000215 9 0.368184 

p (z ≤ x) 0.771255 10 0.810039 

p (χ2 ≤ x) 0.002666 11 0.164418 

Serial Test 12 0.783631 

p (z ≤ x) 0.411508 13 0.793511 

p (χ2 ≤ x) 0.278473 14 0.502610 

OQSO (Monkey Test) 15 0.223676 

p (z ≤ x) 0.269434 16 0.869196 

p (χ2 ≤ x) 0.512343 17 0.711126 

AC Meta KS- Test 18 0.153316 

KS- 0.673715 19 0.523737 

Meta-Meta KS Test 20 0.810293 

KS+ 0.446843 21 0.588191 

KS- 0.171989 22 0.596946 

    

23 0.024276 

    

24 0.604256 

    

25 0.896055 

    
26 0.694216 

    
27 0.168779 

    
28 0.287237 

    

29 0.835736 

    

30 0.833219 

    

31 0.255023 

    

32 0.924341 
 

Table 6 – QNGmeter continuous test results for CS128M. 
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NIST Statistical Test Suite for the Validation of Random Number Generators. 

  

The National Institute of Standards and Technology (NIST) provides a statistical testing 

suite, specified in Special Publication 800-22rev1a, consisting of 15 tests that were developed to 

test the randomness of binary sequences generated by a TRNG or PRNG. The NIST Statistical 

Test Suite (NIST STS) software and documentation can be downloaded from their Cryptographic 

Toolkit web page. 

The NIST STS source code was compiled on a computer running Ubuntu 18.04. A number of 

tests were completed to confirm the functionality of the software. The test suite contains sample 

data files of 1,000,000 bits in length to be analyzed. These include the binary expansions of 

constants e, π, √2 and √3. For each sample file, the NIST STS battery of tests were performed 

and compared to the empirical results found in the SP800-22rev1a documentation Appendix B. 

Following the confirmation that the test suite is operating properly, a binary file of 80,000,000 

raw random bits in length was generated using our QNG Model CS128M (SN: QWR80001) to 

be analyzed.  

All test results are recorded in the following Table 7. The Block Frequency, Non-overlapping 

Template Matching, Overlapping Template Matching, Approximate Entropy, Linear Complexity 

and Serial tests require user prescribed input parameters. The exact values used in these 

examples have been included in parenthesis beside the name of the statistical test. In the case of 

the Non-overlapping Templates test, a Kolmogorov-Smirnov test (KS-test) was performed for 

the collection of 148 P-values. In the case of the Random Excursions and Random Excursions 

Variant tests, only one of the possible 8 and 18 P-values, respectively, has been reported. 

 

 
NIST Battery of Tests Results 

Statistical Test P-value 

Frequency 0.350485 

Block Frequency (m = 128) 0.911413 

Cumulative Sums-Forward 0.122325 

Cumulative Sums-Reverse 0.911413 

Runs 0.066882 

Long Runs of Ones 0.534146 

Rank 0.350485 

Spectral DFT 0.350485 

Non-overlapping Templates (m = 9) 0.753260 

Overlapping Templates (m = 9) 0.004301 

Universal 0.350485 

Approximate Entropy (m = 10) 0.534146 

Random Excursions (x = +1) 0.685890 

Random Excursions Variant (x = -1) 0.839877 

Linear Complexity (M = 500) 0.534146 

Serial (m = 16, ∇Ψ2
m) 0.911413 

Serial (m = 16, ∇2Ψ2
m) 0.739918 

 

Table 7 — NIST Test Suite Results for CS128M. 

  

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
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NIST SP 800-90B Entropy Source Validation. 

 

NIST Special Publication (SP) 800-90B provides a standardized process of validating the 

entropy source quality. The process includes the following steps: 

 

1) Data Collection 

2) Determine the track (IID or Non-IID) 

3) Initial Entropy Estimate 

4) Restart Tests 

5) Update Entropy Estimate 

6) Entropy Validation 

 

NIST offers software for the initial entropy estimation, restart tests and update entropy 

estimation. The source code and documentation is available from NIST GitHub repository15. The 

source code was compiled on a computer running Ubuntu 18.04. The included self-test was 

performed to confirm the functionality of the software. 

 

1. Data Collection. 

 

A sequential dataset of at least 1,000,000 samples must be obtained directly from the noise 

source to determine the initial entropy estimate. If the generation of 1,000,000 consecutive 

samples is not possible, the concatenation of several smaller sets of consecutive samples from 

the same source is allowed. Smaller sets shall contain at least 1,000 samples. 

For the restart tests, the entropy source must be restarted 1,000 times; for each restart, 1,000 

samples shall be collected.  

 

2. Determine Entropy Track. 

 

Entropy estimation is completed based on selecting from two different tracks: IID and non-

IID. The IID-track applies for entropy sources that provide IID (independent and identically 

distributed) numbers, whereas the non-IID track applies for entropy sources that do not provide 

IID numbers.  

The CS128M entropy source provides IID numbers (see Part 1).  

 

3. Initial Entropy Estimate. 

 

The submitter shall provide an entropy estimate, denoted as Hsubmitter, for the noise source 

outputs, which is based on the submitter’s analysis of the noise source. See Part 1 for in-depth 

submitter entropy estimation. After determining the entropy estimation track, a min-entropy 

estimate of the collected sequential dataset of 1,000,000 samples, denoted as Horiginal, is 

calculated using the NIST software. Then, the initial entropy estimate is determined as HI = min 

(Horiginal, Hsubmitter). Submitter entropy estimate, NIST initial entropy estimate, the initial min-

entropy estimate, and additional statistical tests results are reported in Table 8. Figure 4 is a 

screenshot of the actual test run.  

 

                                                           
15 https://github.com/usnistgov/SP800-90B_EntropyAssessment 

https://github.com/usnistgov/SP800-90B_EntropyAssessment
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NIST SP 800-90B Entropy Assessment 

Initial Entropy Estimate 

Statistical Test Results 

Hsubmitter 8.000000 

Horiginal 7.963649 

HI = min (Horiginal, Hsubmitter) 7.963649 

Chi Square Tests PASS 

Length of Longest Repeated 

Substring Test 
PASS 

IID Permutation Tests PASS 

 

Table 8 — NIST Initial Entropy Estimate for CS128M. 

 

 

 
 

 

  

Figure 4: NIST IID-Track Initial Entropy Estimate Test for CS128M 
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4. Entropy Validation: Restart Tests and Update Entropy Estimate 

 

The restart tests re-evaluate the entropy estimation for the noise source using different 

outputs from many restarts of the noise source. A matrix M of row r =1,000 and column c = 

1,000 is constructed from the collection of restart samples. Sanity check is performed on the 

matrix M prior to calculating entropy estimates on the row and column datasets. The entropy 

estimates from the row (Hr) and the column (Hc) datasets are expected to be close to the initial 

entropy estimate HI. If the minimum of Hr and Hc is less than half of HI, the validation fails, and 

no entropy estimate is awarded. Otherwise, the entropy assessment of the noise source is taken as 

the minimum of the row, the column and the initial estimates, i.e., min (Hr, Hc, HI). The results 

are presented in Table 9. Figure 5 is a screenshot of the actual test run. 

 

NIST SP 800-90B Entropy Assessment 

Restart Tests and  

Update Entropy Estimate 

Statistical Test Results 

HI 7.963649 

Hr 7.891083 

Hc 7.891083 

min (Hr, Hc, HI ) 7.891083 

Restart Sanity Check  PASS 

Entropy Validation Test PASS 

 

Table 9 — NIST Validation at Entropy Estimate for CS128M. 

 

 

 

  Figure 5: NIST Restart Tests and Entropy Validation for CS128M 
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BSI AIS 31: Standard Statistical Test Suite. 

 

The BSI AIS 31 Standard Statistical Test Suite consists of nine independent tests to examine 

the randomness of binary sequences generated by the entropy source and the cryptographic post-

processing algorithm. The evaluation process is broken into two test procedures, A and B. Test 

procedure A (Tests T0-T5) is applied to the post-processed final output of the RNG, or internal 

random numbers. Test procedure B (T6-T8) is applied to the raw output data of the entropy 

source. The goal is to ensure that the entropy per bit is sufficiently large prior to seeding the 

post-processing algorithm. 

The complete testing suite, including documentation and software, can be downloaded 

directly from the BSI website16. A JAVA program is provided for simple use of the testing suite. 

The AIS 31 tests require large binary files of raw and internal random numbers, at least 

3,145,728 bits for Test T0 and 5,140,000 bits for Tests T1-T5, to be tested. Therefore, binary 

files of 80 million raw and internal random bits in length were generated using our QNG Model 

CS128M (SN: QWR80001) to be analyzed. 

For the generated random data file all of the statistical tests were applied and the result 

recorded in the following Table 10. In the case of the Test T8, Entropy Test, the bits of entropy 

per byte has been reported. 

 

 
BSI AIS 31 Battery of Test Results 

Statistical Tests Results 

T0 – Disjointness Test PASS 

T1 – Monobit Test PASS 

T2 – Poker Test PASS 

T3 – Runs Test PASS 

T4 – Long Run Test PASS 

T5 – Autocorrelation Test PASS 

T6 – Uniform Distribution Test PASS 

T7 –  Comparative Test for 

Multinomial Distributions 
PASS 

T8 – Entropy Test PASS 

T8 – Entropy Estimation  

(bits of entropy per byte) 
7.998949 

 

Table 10 — AIS 31 Test Suite Results for CS128M. 

 

 

 

 

 

 

 

 

                                                           
16 https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip.zip 

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip.zip
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DIEHARD: A Battery of Tests of Randomness. 

 

The DIEHARD Battery of Tests of Randomness, developed by Prof. George Marsaglia, 

contains a collection of 15 tests to examine the randomness of binary sequences generated by a 

TRNG or PRNG. The complete testing suite, including documentation and software, can be 

found from the DIEHARD archived website17. Windows executable files are provided for simple 

use of the testing suite. The DIEHARD tests require a large binary file of random integers, at 

least 80 million bits, to be tested. Therefore, a binary file of 80 million raw random bits in length 

was generated using our QNG Model CS128M (SN: QWR80001) to be analyzed. 

For the generated random data file all of the statistical tests were applied and the resulting p-

values recorded in the following Table 11. In the case of the Birthday Spacings, Binary Rank 

(6x8 matrices), OPSO, OQSO, DNA, Count-the-1’s (specified bytes), This is a Parking Lot, The 

Minimum Distance, 3DSpheres, Overlapping Sums, and Runs (up & down) tests, only the K-S 

tests are reported here. 

 

 
DIEHARD Battery of Tests Results 

Statistical Test p-value 

Birthday Spacings 0.544478 

Overlapping 5-Permutation 0.627684 

Binary Rank (31x31) 0.715902 

Binary Rank (32x32) 0.977584 

Binary Rank (6x8) 0.362809 

Bitstream 0.255699 

OPSO 0.083799 

OQSO 0.788372 

DNA 0.388282 

Count-the-1's (byte stream) 0.848490 

Count-the-1's (specified bytes) 0.822120 

This is a Parking Lot 0.016155 

The Minimum Distance 0.255680 

3DSpheres 0.910887 

Squeeze 0.067427 

Overlapping Sums 0.501066 

Runs (up) 0.646677 

Runs (down) 0.217652 

Craps (no. of wins) 0.919992 

Craps (throws/game) 0.662403 
 

Table 11 — DIEHARD Test Suite Results for CS128M. 

 

 

 

 

 
 

                                                           
17 https://web.archive.org/web/20160113163414/http://stat.fsu.edu/pub/diehard/diehard.zip 

https://web.archive.org/web/20160113163414/http:/stat.fsu.edu/pub/diehard/diehard.zip
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