
1

The ComScire® CryptoStrong™ Random Number Generator.

© December 17, 2019 Scott A. Wilbera and Luis Araujob

Development of quantum computers will soon provide a means of weakening or

breaking many currently used encryption methods. ComScire’s1 new CryptoStrong

random number generators2 provide the highest level of unpredictability and

reliability available. The Model CS128M includes an entropy source provably

surpassing the security of any other known generator, and cryptographic post

processing comprising an AES-256 encryption module as defined by both NIST and

the German AIS-20/31. Strong tamper resistance prevents reading or changing

firmware and hardware design provides high resistance against side channel

attacks.

KEYWORDS: Random Number Generator, Entropy, Predictability, Data Security,

Cybersecurity, Cryptographic Strength, Cryptography, Post-Quantum, Quantum

Computer.

PART 1: ENTROPY SOURCE.

INTRODUCTION.

Random number generators (RNGs) are intended to provide a source of unpredictable

numbers or bits for a variety of important applications. These applications notably include

generating keys for encrypting data and messages to prevent unauthorized access. For example,

online financial transactions, information in the Cloud and government and military secret

transmissions. In addition, random numbers form the basis of fairness for all lotteries and

electronic “games of chance.”

RNGs consist of two fundamental types: 1) pseudorandom generators, which use

mathematical algorithms to provide numbers that simulate or give the appearance of randomness,

and 2) true random number generators or nondeterministic generators, which require a physical

source of entropy to produce actually unpredictable numbers. Pseudorandom generators must be

seeded or initialized with a true random number. Nondeterministic generators are essential for

every type of encryption and data security.

Many applications of random numbers are critically important and even a partial failure of

the RNG used could have catastrophic consequences. Users of these random numbers must be

a President of The Quantum World Corporation. swilber@coreinvention.com
b Senior Engineer at The Quantum World Corporation.
1 ComScire is a registered trademark owned by Core Invention, Inc. https://coreinvention.com/
2 Protected by multiple issued US patents.

mailto:swilber@coreinvention.com
https://coreinvention.com/

2

able to rely implicitly on their maximum cryptographic strength3. This means that every random

bit must be independent identically distributed (i.i.d.) and uniformly distributed, making them

absolutely unpredictable beyond chance expectations given unlimited computing power

(including future quantum computers). Another way of stating this is that the entropy of a

sequence of these bits is equal to the length of the sequence less an infinitesimal amount.4 NIST

formerly defined “Full Entropy” as H = (1 – ε) per bit, where 0 ≤ ε ≤ 2-64 [SP 800-133]. In

practice we are limited to finite sequence lengths for testing, so a more realistic, though less

precise definition is, ‘a source of full-entropy bitstrings serves as a practical approximation to a

source of ideal random bitstrings of the same length’ [SP 800-90A1].

The entropy sources in the PureQuantum® QRNGs sold by ComScire are described in

extensive detail by Wilber [Wil13]. They comprise both classical, primarily thermal and shot

noise sources, and quantum mechanical sources produced by quantum tunneling in the CMOS

transistors. The magnitude of the noise sampled from these sources is modeled and measured to

allow accurate calculation of the resultant entropy. The entropy source in the CS128M is the

same as in the PureQuantum models – although somewhat expanded – with small adjustments

due to 1.1V versus 1.2V core operating voltage and feature dimensions of 28nm versus 65nm of

the Cyclone VE and Cyclone III Field-Programmable Gate Array (FPGA) families respectively.5

These entropy sources have been extensively tested for years in commercial products,

including continuous tests of individual sources amounting to hundreds of trillions of bits. They

use no postprocessing so the tests revealed the fundamental quality of the raw output of the

entropy sources. Testing to hundreds of terabits would have revealed statistical defects on the

order of 0.0000001 (100 parts per billion). No defects were observed.

ENTROPY SOURCES AND THE EFFECT OF POST-PROCESSING.

Virtually all previously described entropy sources (except in ComScire’s PureQuantum®

generators) have significant statistical defects and a corresponding reduction of total entropy. In

order to satisfy the statistical requirements for modern TRNGs, their output sequences are

“whitened” by passing imperfect random numbers through a cryptographic hash function. This

has the effect of greatly improving their statistical properties.

Conditioning a TRNG sequence having deficient entropy does not necessarily make it

entirely unpredictable, especially if post-processing methods are also used to extend or increase

the number of output numbers relative to the number of bits of entropy provided to the input. The

output numbers are extended using a deterministic algorithm that is periodically reseeded by the

true entropy source. The amount of true entropy per output bit is equal to the number of bits of

entropy input to the algorithm divided by the number of output bits.

3 Cryptographic Strength is related to the number of operations a computer must use to break the encryption to

reveal plain text. It depends primarily on the number of bits of entropy in the key, but also on the encryption method

and the type of computer – classical or quantum mechanical.
4 An absolutely perfect random sequence is theoretically impossible to generate, but it is possible to approach that

ideal arbitrarily closely, as shown in this paper.
5 Cyclone V and Cyclone III are FPGA family names of Intel Corporation. These were formerly made by Altera

Corporation, which was acquired by Intel in Dec. 2015.

3

Statistical tests alone cannot easily quantify the amount of physical or true entropy used to

produce random output sequences. Output sequences are predominantly pseudorandom when

they have been greatly extended using deterministic post-processing. Such sequences are

currently beyond the ability of most brute-force attacks, but they are theoretically vulnerable to

attack by a sufficiently advanced quantum computer.

The ideal entropy source must provide sequences that are provably unpredictable, given any

realistic length of previous bits and unlimited computational power. In addition, the ideal source

should provide entropy at a rate high enough to remove the need to algorithmically extend the

output sequence. The combination of ideal entropy source and cryptographic post-processing

results in maximum possible cryptographic strength, even when attacked by arbitrarily advanced

quantum computers.

ENTROPY FROM VARIOUS SOURCES.

Two broad types of noise in the production and measurement of entropy are extrinsic and

intrinsic. Extrinsic sources are not directly part of the generator entropy source and are coupled

to the source by electromagnetic fields, power supply variations or even mechanical vibrations.

Extrinsic noise must not be relied on as an entropy source in a secure random number generator

system because of the potential to observe and even inject patterns into the generator circuit.

Intrinsic sources are inherent in the generator source and arise from fundamental physical

principles. Intrinsic sources in transistors and integrated circuits include shot noise from

diffusion and tunneling currents, thermal or Johnson noise, flicker or 1/f noise and generation-

recombination noise. Intrinsic noise is chaotic and nondeterministic. Most extrinsic sources can

be eliminated or greatly reduced by proper design and shielding of the generator, while intrinsic

sources are usually not reducible below their theoretical value.

The design presented in this paper requires measurements of the entropy from the sources

being used. Most modern digital ICs are constructed using MOS transistors in a complementary

or CMOS configuration. The entropy produced in gates constructed from these transistors is

measurable by detecting variations in transition times that produce jitter in an oscillating signal

passing through them. This is done by latching the state of a free-running ring oscillator (RO)

with an independent clock signal. A ring oscillator is a multi-stage delay line containing an odd

number of inverting gates with its output connected to its input. Each gate in the ring oscillator

adds a certain amount of jitter to the signal transition as it passes through. The statistical

distribution of jitter due to intrinsic sources is approximately normally distributed, and the total

cumulative jitter from these sources is the jitter introduced by a single stage multiplied by the

square root of the number of stages the transition has passed through before being measured.

DEFINITIONS OF SYMBOLS.

ε is the deviation from ideal entropy, ε = 1 – H.

EP is the deviation from ideal predictability, EP = P – 0.5

𝑓𝑟𝑖𝑛𝑔 is the oscillation frequency of a ring oscillator, 𝑓𝑟𝑖𝑛𝑔 = 1 (2 𝑛𝑙𝑢𝑡 𝜏𝑝)⁄ Hz.

H is entropy.

4

ℎ−1 is the mathematical inverse of the entropy equation.

HP is entropy as a function of P, 𝐻𝑃 = −(𝑃𝐿𝑜𝑔2𝑃 + (1 − 𝑃)𝐿𝑜𝑔2(1 − 𝑃)) bits.

HT is total entropy produced by combining a number of entropic sources or numbers.

𝐽𝐹 is the fractional jitter in a ring oscillator, 𝐽𝐹 = 𝑓𝑟𝑖𝑛𝑔 𝐽𝐿𝑈𝑇 √2𝑛𝑙𝑢𝑡 rms.

JLUT is the rms jitter caused by a single LUT.

n is the number of entropic bits to be combined.

N is the number of bits in a sequence.

𝑛𝑙𝑢𝑡 is the number of LUTs composing a ring oscillator.

p(x) is the probability of x occurring.

P is predictability – the probability of correctly predicting or guessing the next bit in a sequence.

PC is combined predictability, 𝑃𝐶 = (𝑃𝐹𝑃 + 1)/2.

PF is fractional predictability, PF = 2P – 1.

PFI is the fractional predictability of independent bits to be combined.

PFP is the product of two or more fractional predictabilities.

PFR is the resultant fractional predictability, 𝑃𝐹𝑅 = 𝑃𝐹𝐼
𝑛 .

PN is the maximum next bit predictability given an N-bit sequence, 𝑃𝑁 ≤ ½ + √𝑁 × (𝑃 − ½).

RO is a ring oscillator.

𝜏𝑝 is the propagation delay through a single LUT or gate, 𝜏𝑝 = 1/(2 𝑛𝑙𝑢𝑡 𝑓𝑟𝑖𝑛𝑔) s.

COMBINING BITS OF ENTROPY.

Entropy and predictability are terms with different meanings in different fields. Shannon

entropy [Sha48] is defined for the binary case when only 1 or 0 may be produced as, 𝐻 =

−(𝑝(1)𝐿𝑜𝑔2𝑝(1) + 𝑝(0)𝐿𝑜𝑔2𝑝(0)), where p(1) and p(0) are the probabilities of a one and a

zero occurring respectively and 𝐿𝑜𝑔2 is the logarithm in base 2; used when entropy is quantified

in bits. For this discussion, p(1) is replaced by predictability, P, defined as the probability of

correctly guessing the next bit in a sequence, and p(0) is replaced by 1−P, where 0.5 ≤ 𝑃 ≤ 1.0.

Substituting predictability for the probabilities, entropy as a function of P is defined, 𝐻𝑃 =

−(𝑃𝐿𝑜𝑔2𝑃 + (1 − 𝑃)𝐿𝑜𝑔2(1 − 𝑃)). When the value of H is measured or theoretically

calculable, 𝑃 = ℎ−1, where ℎ−1 is the mathematical inverse of the entropy equation. The inverse

is normally performed numerically since there appears to be no closed-form equation for it. The

inverse of the entropy equation has two solutions, but only the one where 𝑃 ≥ 0.5 is used.

It is essential to be able to calculate the precise levels of entropy or predictability of bits

combined by XOring them together6. The predictability of each bit is converted to fractional

predictability, 𝑃𝐹 = 2𝑃 − 1. The fractional predictabilities of each of the original bits are then

multiplied to produce their product, 𝑃𝐹𝑃, and the combined predictability, 𝑃𝐶 is finally

calculated, 𝑃𝐶 = (𝑃𝐹𝑃 + 1)/2. The combined or total entropy, HT, is calculated using the

equation for HP = f(PC).

6 The XOR function, or equivalently the parity function when more than two bits are combined, is used because it

was proven to be the most efficient algorithm for improving the randomness properties when combining imperfect

random sequences [San86], and because its effect on combining entropy sources has been determined by the

research underlying this paper and elsewhere [Dav02].

5

PHYSICAL MEASUREMENTS AND TOTAL ENTROPY CALCULATION.

An Intel Field-Programmable Gate Array (FPGA) was selected for the CryptoStrong Model

CS128M design. A number of measurements and tests were performed using several

5CEFA4U19C8N FPGAs to determine the variables required in the entropy model.

The propagation delay, 𝜏𝑝, through a single LUT or FPGA “gate” is found by measuring the

average frequency of several ring oscillators and calculating 𝜏𝑝 = 1/(2 𝑛𝑙𝑢𝑡 𝑓𝑟𝑖𝑛𝑔), where 𝑛𝑙𝑢𝑡

is the number of LUT’s in the ring and 𝑓𝑟𝑖𝑛𝑔 is the frequency of oscillation. Six physically

independent ring oscillators were programmed using 11 non-inverting gates and one inverting

gate, arranged in single logic blocks to minimize variations between rings. The average

measured ring oscillator frequency was, 𝑓𝑟𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ = 198.4±7.1MHz (±1 SD), giving a propagation

delay of 𝜏𝑝 = 210.0 ± 7.45 ps.

The entropy source includes three independent but otherwise identical sources, which are

combined into one final source. An offline diagnostics mode can provide raw data from a

number of internal test points for external testing. These test points are designated levels 1, 2 and

3, representing three levels in the combination of multiple ring oscillator measurements. Each

level includes three different source test points to allow representative statistical measurements

throughout the entropy source.

The level 1 test outputs are produced by XOring signal taps from pairs of ring oscillators,

each RO having different numbers of LUTs and signal taps, and latching the XOred outputs with

a 128 MHz clock. The three available level 1 outputs from two FPGAs were measured to

produce a mean entropy7 of, H = 0.8670525 with corresponding P = 0.7112873 and PR =

0.4225746. Programs 1a-c in Appendix II give the relationships between oscillator jitter,

predictability and entropy. Each pair of rings was fully modeled and solved backward

numerically giving the single LUT jitter with a geometric mean value of, JLUT = 34.066353 ps

rms.

Level 2 test outputs are produced by XOring 15-level 1 outputs. Six measurements from two

FPGAs gave a mean entropy, H = 1 – ε, where ε = 5.151157 x 10-11, with corresponding P =

0.500004225233 and PR = 8.450466 x 10-6. Numerical solution gives the mean single-LUT jitter,

JLUT = 30.91735 ps rms.

The weighted geometric mean of level 1 & 2 measurements gives, JLUT = 31.34873 ps rms.

This value was used in a model of the average level 2 output (taking the average number of RO

LUTs and taps) From this the averages used throughout the model were calculated: Average

PR/tap = 0.84667378, P/tap = 0.9233368 and H/tap = 0.3903111. The algebraic average number

of taps/ring = 2.333333 and the geometric mean of LUTs/ring, nlut = 9.528536 adjusted to

9.4765952 for internal consistency9.

7 Entropy is a nonlinear variable so its mean is calculated using the geometric mean of the associated relative

predictabilities. Details are described in Appendix I.
8 The average level 2 output is produced from 70 taps and the single tap PR is the 70th root of the total PR.
9 The geometric mean of nlut is 9.5285357. A slight adjustment (a reduction of about 0.5483%) was determined

numerically.

6

Calculating Total Entropy.

The following steps use the measurements and physical design to calculate the total entropy from

the entropy source in the CS128M. The average number of LUTs in the ring oscillators

comprising the entropy source, nlut, and the geometric mean of the number of signal taps in the

rings are used to simplify the calculations.

• Mean oscillator frequency with nlut = 9.4762952 and 𝜏𝑝 = 210.0 ps yields a mean ring

oscillator frequency, 𝑓𝑟𝑖𝑛𝑔 = 1 (2 𝑛𝑙𝑢𝑡 𝜏𝑝)⁄ = 251.254 MHz.

• JLUT = 31.34873 ps rms: the weighted geometric mean from all statistical measurements.

• Ring oscillator fractional jitter, 𝐽𝐹 = 𝑓𝑟𝑖𝑛𝑔 𝐽𝐿𝑈𝑇 √2𝑛𝑙𝑢𝑡 = 0.03428991 rms.

• Entropy per sampled tap calculated numerically = 0.3903111

• Predictability per tap is, P = h-1 = 0.9233368 and PFI = 2P – 1 = 0.8466737.

• Each ring provides an average of 2.33333 signal taps per ring times 2 rings XORed

together gives 4.66667 taps per sample (each average level 1 output). This is multiplied

by 15 samples from 15 pairs of ring oscillators. One level 2 output is thus produced from

n = 70 mean samples per bit at 128 MHz sample rate.

• The resultant fractional predictability at level 2 is, 𝑃𝐹𝑅 = 𝑃𝐹𝐼
𝑛 = 0.846673770 =

8.712141 × 10−6. PC = (8.712141×10-6 + 1)/2 = 0.500004356070. The average entropy

for each level 2 output is 1.0 – ε, where ε = 5.47512 x 10-11.

• The next internal test level (level 3) results from XORing 32 independent level 2 outputs

yielding, 𝑃𝐹𝑅 = 𝑃𝐹𝐼
𝑛 = 0.84667372240 = 1.213377 × 10−162 and PC = (1.21337×10-162

+1)/2 = 0.5 + 6.066887×10-163. The entropy at this level is, H = 1– ε where ε

=1.06203×10-324.

• The final output of the entropy source is the result of XORing the three level 3 outputs to

produce each final output bit at 128 Mbps. This produces 𝑃𝐹𝑅 = 𝑃𝐹𝐼
𝑛 =

 0.84667376720 = 1.213377 × 10−486 and PC = (1.7864372×10-486 +1)/2 = 0.5 +

8.9321861×10-487. The theoretical total entropy at the final output of the entropy source

is, HT = 1– ε where ε = 2.3021×10-972. The fractional defect in other statistics is on the

order of 9 x ×10-487, which makes the output indistinguishable from a sequence of

perfectly random bits.

In most of these calculations, the precision is reported as 6 or more digits. These digits are

presented for calculation purposes while the actual accuracy may be considerably less. For

example, the measured 𝑓𝑟𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ was reported as 198.4MHz. However, the calculated standard

deviation was 7.1MHz so the accuracy is more correctly 198.4 ±7.1MHz or ± 3.6%.

DISCUSSION.

The entropy and size of statistical defects in previous random number generators and entropy

sources could not be qualified beyond what could be directly tested using statistical tests. This

was primarily due to a lack of knowledge of how to generate random numbers with a precisely

7

quantifiable amount of entropy [Sar19]. To overcome previous limitations requires a deep

understanding of physical entropy sources and how to measure them, and a clear and complete

model for using the measured output to achieve any desired level of entropy and statistical defect

in an output sequence.

Design equations and specific practical designs for simple, inexpensive yet highest quality

nondeterministic random generators are presented. The design is implemented in CMOS

integrated circuits, but the principles may be applied to random number generators of virtually

any design or entropy source. NIST formerly defined “full entropy” as H = (1 – ε) bits per bit,

where 0 ≤ ε ≤ 2-64 [SP 800-90C, p. 4], that is, ε ≤ 5.421×10-20. The entropy source described here

not only meets, but vastly surpasses that requirement without any type of post processing,

conditioning or randomness correction.

The deviation of predictability above the ideal value of 0.5 is EP = P – ½. EP is also the

approximate level of statistical defects in the sequence. About 1 𝑥2⁄ bits must be tested to

observe a statistical defect in a sequence with x = EP. A major result of the model is to show it is

possible to generate and qualify random sequences whose statistical defects are too small to be

detected by direct testing.

Generators constructed following the design rules in this paper can produce sequences

indistinguishable from an ideal nondeterministic sequence – beyond the capability of any

theoretical quantum computer to predict beyond chance. The entropy source described in this

paper has a theoretical EP of about 8.9×10-487. Photonic or other common quantum generators

cannot begin to approach that level of nondeterminism due to inherent limitations in the entropy

measuring components.

The German Federal Office for Information Security (BSI) requires an entropy source of

only H ≥ 0.997, giving P ≤ 0.53223. These numbers may be passed through a cryptographic hash

function to correct their entropy deficit and make them unpredictable. However, a hash function

is a deterministic algorithm, usually of open design. Knowing the raw random numbers have

significant predictability may allow a future quantum computer with virtually unlimited

computational power to crack the hash with some form of collision or brute force attack (See

Cimpanu [Cim19] as a suggestive example.).

The entropy source in the CS128M produces raw bits with effectively perfect entropy and

unpredictability. That is the best possible solution to resist threats arising in the post-quantum

age.

8

Appendix I – Entropy Model Equations.

This section provides a number of equations and direct tests demonstrating the basis of the

entropy model used to design ComScire’s PureQuantum® QRNG models and the entropy source

in the Model CS128M CryptoStrong™ generator. The model demonstrates how to combine a

number of measurements of a physical entropy source or sources to achieve desired levels of

entropy and predictability.

The fundamental relations of the model are:

1) Shannon entropy, H, for a binary sequence with an alphabet [0, 1] is 𝐻 =

−(𝑝(1)𝐿𝑜𝑔2𝑝(1) + 𝑝(0)𝐿𝑜𝑔2𝑝(0)), where p(1) and p(0) are the probabilities of a one or

a zero occurring respectively, and 𝐿𝑜𝑔2 is the logarithm in base 2; used when entropy is

quantified in bits. This equation is a function of only one independent variable since p(0)

= 1 – p(1). For this discussion, p(1) is replaced with predictability, P – defined as the

probability of correctly predicting the next bit in a sequence – and p(0) is replaced by

1−P, where 0.5 ≤ 𝑃 ≤ 1.0. After substituting predictability for the probabilities, entropy

as a function of P is 𝐻𝑃 ≅ −(𝑃𝐿𝑜𝑔2𝑃 + (1 − 𝑃)𝐿𝑜𝑔2(1 − 𝑃)). This equation becomes

progressively more accurate as ε, deviation from the ideal HP = 1.0, becomes very small.

2) Predictability, P, and entropy, H of a sequence10 of true random numbers are two related

representations of its randomness. Each variable may be mathematically transformed into the

other. When H is measurable or theoretically calculable, P may be calculated as 𝑃 = ℎ−1,

where ℎ−1 is the mathematical inverse of the entropy equation. The inverse is performed

numerically (see Appendix II) since there appears to be no closed-form solution;

however, see the approximations below. The inverse of the entropy equation has two

solutions, but only 𝑃 ≥ 0.5 is used.

3) Entropy can be measured statistically with reasonable accuracy using, for example, an

update of Maurer's “Universal Test” [Cor99], without prior knowledge of the various

statistical defects that may be present in the sequence being tested. From these

measurements the effective predictability can be calculated.

The following approximations for HP, P, ε and EP have been found11:

a) 𝐻𝑃 ≅ 1 − (2 ln2⁄)(𝑃 − ½)2

b) 𝑃 ≅ ½ + √ln 2 2⁄ √1 − 𝐻𝑃

c) 𝜀 ≅ (2 ln2⁄)𝐸𝑃
2

d) 𝐸𝑃 ≅ √ln 2 2⁄ √𝜀

These approximations conveniently allow HP and P to be calculated with high accuracy and

without the use of extended precision when HP and P are only moderately close to 1.0 and 0.5

respectively.

HP is an exact function of P when bias in the counts of 1s and 0s is the only statistical

defect.12. However, HP is decreased by the presence of any patterns or statistical defects. The

10 For uniformity throughout Part 1 of the paper, H refers to the value on a per-bit basis. This applies when either

bits or sequences are mentioned. The number of bits of entropy in a sequence of length n is simply n H or n – n ε.
11 Their derivation is omitted for brevity, but their accuracy is easily confirmed.

9

decrease in HP from its ideal value of 1.0 is ε = 1 – HP. The approximation for ε shows it

decreases as the square of the deviation of P from its ideal value of 0.5. A significant defect in P

of 0.0001, i.e., P = 0.5001, gives ε = 2.88539 x 10-8. It was shown elsewhere the mathematical

distance from a uniform distribution of a sequence decreases slowly as ε decreases [Skó15]. The

approximation for EP reveals it decreases as the square root of ε.

4) Relative predictability, PR, is defined as 𝑃𝑅 = 2𝑃 − 1. When independent bits are XOred

together, the relative predictability of the resultant sequence of bits, PFR, is the product of

the relative predictabilities of the initial bits. The resultant entropy is easily calculated

using the equation for HP after calculating P = (PFR + 1)/2. Or, the entropy may be

measured statistically if ε is not too small.

When there is significant dependence between the XOred bits, usually in the form of

autocorrelation between bits measured from a single entropy source, the entropy of the

resultant sequence is reduced by the mutual information. A statistical measurement is

necessary to provide an accurate assessment of the entropy when such dependence is

present. Good agreement between statistical measurements and the calculated HP

indicates the bits are sufficiently independent.

5) A supplemental algorithm is derived from the preceding. The mean of n entropy

measurements is calculated by:

a) Converting each entropy to relative predictability, PR,

b) Finding the geometric mean (the nth root of their product) of all PRs,

c) Converting the mean PR to P,

d) Using P to calculate the mean entropy.

6) PN is the maximum next bit predictability given a previous sequence of length N bits with

single bit predictability, P. This expression was developed from a study of random walk

statistics [Ste01]. In equations describing a one-dimensional random walk, the

probabilities of a 1 or a 0 occurring were replaced by predictability, P and 1 – P

respectively. A fundamental derived relation is, 𝑁 =
2𝑃𝑁−1

2𝑃−1
ln

1−𝑃𝑁

𝑃𝑛
/ ln

1−𝑃

𝑃
, where N is

the average number of bits that must be used in a random walk to produce a bit with

predictability, PN, and PRN is the relative predictability of the next bit. Using the fact that

ln
1−𝑃

𝑃
≅ −2𝑃𝑅 when 𝑃𝑅 ≪ 1, 𝑁 ≅

𝑃𝑅𝑁

𝑃𝑅

−2𝑃𝑅𝑁

−2𝑃𝑅
, which simplifies to, 𝑁 ≅ [

𝑃𝑅𝑁

𝑃𝑅
]

2

.

Solving, 𝑃𝑅𝑁 ≅ √𝑁𝑃𝑅. Substituting 𝑃𝑅𝑁 = 2𝑃𝑁 − 1 and 𝑃𝑅 = 2𝑃 − 1 and simplifying

yields 𝑃𝑁 ≅ ½ + √𝑁 × (𝑃 − ½). An alternate derivation gives, 𝑃𝑁 ≤

1 (1 + ((1 − 𝑃) 𝑃⁄)𝑛)⁄ , where 𝑛 ≅ √𝑁. The accuracy of the approximation is > 8 digits

when P ≤ 0.50001, and becomes more accurate as P → 0.5.

12 Bias, the ratio of 1s to total bits, is by definition p(1) and p(0) = 1 – p(1). Hence, Shannon entropy is exact when

only bias is present. If the bits are biased but independent, an iterated procedure [Per92], originally due to Von

Neumann, can be used to extract unbiased bits with entropy approaching the total entropy in the original sequence.

This procedure fails when any other form of statistical defect is present.

10

Appendix II – Programs.

US Pat. no. 6,862,605, [Wil05] discusses how to calculate the entropy of a sampled

oscillatory signal given rms jitter as a fraction of the oscillatory signal period. (See also:

[Sun07]). The entropy is calculated numerically by first calculating the average probability of

correctly predicting the next sampled value of the oscillator signal, P, and then using Shannon’s

entropy equation modified to use the single variable, P. The fractional jitter must be adjusted to

an effective jitter, 𝐽𝐸 = 𝐽𝐹√𝑓𝑜𝑠𝑐/𝑓𝑠𝑎𝑚𝑝, where 𝑓𝑜𝑠𝑐 is the ring oscillator frequency and 𝑓𝑠𝑎𝑚𝑝 is

the sampling frequency. This adjustment accounts for the fact the effective cumulative jitter at

each sample time is that jitter which accumulates since the previous sample. The following

Mathematica13 programs perform the required numerical calculations:

prob[mu_, rho_]:=Sum[CDF[NormalDistribution[mu, rho], x+1/2] Program 1a

CDF[NormalDistribution[mu, rho], x], {x, -Round[6 rho], Round[6 rho]}]

avgprob[rho_, hf_, lf_]:=(ro=rho Sqrt[hf/lf]; divisions=Max[1000, Ceiling[5/ro]]; Program 1b

If[ro>.9, .5, N[2Sum[prob[mu, ro], {mu, 0, 1/2, 1/(4divisions)}]/(2divisions+1)-

Sum[prob[mu, ro], {mu, 0, 1/2, 1/(2divisions)}]/(divisions+1)]])

H[rho_, hf_, lf_]:=(apr=avgprob[rho, hf, lf]; Program 1c

(-1/Log[2])(apr Log[apr]+(1-apr)(Log[1-apr])))

The function H[rho_, hf_, lf_] calculates entropy, where the arguments, rho, hf and lf are the

fractional jitter, JF, and the ring oscillator and sampling frequencies respectively, mu = 0.0. The

function avgprob[rho_, hf_, lf_] calculates the average predictability, P. When the fractional

jitter gets smaller the number of divisions used in the function avgprob is automatically

increased. 5/JE divisions rounded up to the next higher integer will yield about three significant

digits of accuracy for JE down to 0.00001.

The precision of most programming languages cannot represent the numbers in these

calculations. When necessary, both entropy and its inverse were conveniently calculated in

Mathematica using extended precision up to 1000 digits.

13 From Wolfram Research.

11

Appendix III – Error Analysis.

Values of some parameters are calculated from measurements which may be in error, or

change over time, temperature, supply voltage and chip-to-chip process variations. Errors in

these parameters will result in an increase or decrease in the entropy produced. For simplicity,

only the values of ε are shown in the tables, where the total entropy is HT = 1 - ε.

Table 1 shows the effect on total entropy (HT) in the output bits when using a wide range of

ring oscillator frequency (fring) from a low of 80% to a high of 125% of the nominal value used in

the paper.

RO Frequency, fring Low (𝟎. 𝟖 ×) Nominal High (𝟏. 𝟐𝟓 ×)

1 – HT: ε 1.69×10-678 2.30×10-972 7.15×10-1411

Table 1

Total entropy is calculated from the fractional jitter in the LUT output transitions, JLUT. Table 2

shows the effect on total entropy of varying JLUT over a range of 0.5 to 2 times the value used in

the paper.

Transition Jitter, JLUT Low (½ ×) High (𝟐 ×)

1 – HT: ε 1.18×10-465 8.79×10-2150

Table 2

Test level 2 entropy is both measured and calculated using the entropy model. Entropy is

then used to calculate, EP = P – ½. Close agreement between measured and calculated values is

significant validation of the model. Table 3 shows the effect on total output entropy of varying

the level 2 EP from 0.5 to 2 times the nominal, calculated value. This is effectively the range

spanned by the direct statistical measurement, shown for comparison.

Level 2 EP Low (½ ×) Nominal High (𝟐 ×)

Calculated EP 2.178×10-6 4.356×10-6 8.712×10-6

Measured EP ±1SD 2.1×10-6 5.1×10-6 8.1×10-6

Final Output ε 3.67×10-1030 2.30×10-972 1.44×10-914

Table 3

These three tables show the directly or indirectly measured variables used to calculate total

entropy in the output of the Model CS128M described in this paper. When these variables are

changed over a wide range, total entropy varies as shown. The ranges are believed to include

worst-case values.

The single worst-case result of ε = 1.17×10-465 indicates a statistical defect of 2.02×10-233

would theoretically be present in the entropy source output sequence. This level of defect is

12

clearly not detectable by any known or theoretical means. Nor could an infinitely powerful

quantum computer predict a next bit beyond chance (no better than ½ + 1.28 x 10-225)14 given a

previous sequence of 4 Pb (petabits) that would be generated in a full year at 128 Mbps.

Functional Testing versus Operating Temperature.

Table 4 shows the variation of the mean measured entropy at level 1 test points versus

temperature of the FPGA. The temperature was measured with a thermocouple in direct contact

with the middle of the FPGA heatsink. The accuracy of the temperature is approximately ± 2°C.

The final ε was calculated from the inferred initial relative predictability, PFI, at each

temperature.

Measured Entropy Vs. Temperature

T °C Level 1 H Final ε (Calc.)

-40 0.858 1.01 10-1036

-35 0.860 2.76 10-1045

-30 0.864 2.53 10-1066

0 0.862 5.02 10-1054

10 0.833 1.10 10-940

20 0.824 1.14 10-910

32 0.802 1.78 10-875

 40.5 0.755 4.71 10-716

50 0.814 4.71 10-876

60 0.890 2.46 10-1193

65 0.897 1.21 10-1233

80 0.887 1.99 10-1175

90 0.836 1.69 10-951

Table 4

The temperature of the system board was varied from about –50 to +100°C. The generator

system was fully functional at all times as indicated by continuously passing all internal tests and

providing test data output. Entropy measurements were made from –40 to +90°C. All values are

easily within the believed worst-case ranges of Tables 1 and 2.

14 Predictability of the next bit given a sequence of length N is found to be (see Appendix I), 𝑃 ≤ ½ + √𝑁 × 𝐸𝑃,

where EP is the single bit predictability – ½.

13

PART 2: CRYPTOGRAPHIC DRBG POST-PROCESSING.

INTRODUCTION.

Part 2 is a step-by-step documentation describing the CryptoStrong™ Model CS128M RNG

implementation to comply with NIST Special Publication SP 800-90C and BSI AIS 20/31

guidelines for constructing random numbers. NIST SP 800-90C (2nd Draft), Recommendation for

Random Bit Generator (RBG) Constructions, specifies RBG construction consisting of

deterministic random bit generators (DRBG) mechanisms, as specified in NIST SP 800-90A, and

entropy sources, as specified in SP 800-90B. Likewise, BSI AIS 20/31, Functionality Classes for

Random Number Generators (RNG), describes the German Common Criteria (CC) for

implementing RNGs grouped in specific hierarchal classes which may consist of a physical RNG

(PTRNG) and a deterministic RNG (DRNG).

The following definitions clarify and compare the terminology used by NIST and the

German BSI:

NIST Terminology.

Random Bit Generator (RBG): A device or algorithm that is capable of producing a random

sequence of (what are effectively indistinguishable from) statistically independent and unbiased

bits. An RBG is classified as either a DRBG or an NRBG.

Non-deterministic Random Bit Generator (NRBG): An RBG that always has access to an

entropy source and (when working properly) produces output bit strings that have full entropy.

Often called a True Random Number (or Bit) Generator.

Deterministic Random Bit Generator (DRBG): An RBG that includes a DRBG mechanism

and (at least initially) has access to a randomness source. The DRBG produces a sequence of bits

from a secret initial value called a seed, along with other possible inputs. A DRBG is often called

a Pseudorandom Bit (or Number) Generator.

Backtracking Resistance: A property whereby an attacker with knowledge of the state of the

RBG at some time(s) subsequent to time T would be unable to distinguish between observations

of ideal random bit strings and (previously unseen) bit strings that are output by the RBG at or

prior to time T.

Prediction Resistance: A property whereby an adversary with knowledge of the state of the

RBG at some time(s) prior to T (but incapable of performing work that matches the claimed

security strength of the RBG) would be unable to distinguish between observations of ideal

random bitstrings and (previously unseen) bitstrings output by the RBG at or subsequent to time

T.

BSI Terminology.

Random Number Generator (RNG): A group of components or an algorithm that outputs

sequences of discrete values (usually represented as bit strings).

14

Physical RNG (PTRNG): A RNG where dedicated hardware serves as an entropy source.

NOTE: we use the short term “physical RNG” for physical true RNG as well because all

physical RNG are true RNG by definition. We use the abbreviation “PTRNG” instead of

“PRNG” to avoid confusion with pseudorandom generators.

Deterministic RNG (DRNG): An RNG that produces random numbers by applying a

deterministic algorithm to a randomly selected seed and, possibly, on additional external inputs.

Hybrid PTRNG: A PTRNG with a (complex) post-processing algorithm. The goal of

(sometimes additional) cryptographic post-processing with memory is to increase the

computational complexity of the output sequence. NOTE: A complex algorithmic post-

processing algorithm may be viewed as an additional security anchor for the case when the

entropy per output bit is smaller than assumed.

Backward secrecy: The assurance that previous output values cannot be determined (i.e.,

computed or guessed with non-negligible probability) from the current or future output values.

Forward secrecy: The assurance that subsequent (future) values cannot be determined (i.e.,

computed or guessed with non-negligible probability) from current or previous output values.

Enhanced Backward Secrecy: The assurance that previous output values of a DRNG cannot

be determined (i.e., computed or guessed with non-negligible probability) from the current

internal state, or from current or future output values. NOTE: The knowledge of the current state

of a pure DRNG (with no additional input or with publicly known input) implies knowledge of

the current and future output.

Enhanced Forward Secrecy: The assurance that subsequent (future) values of a DRNG

cannot be determined (i.e., computed or guessed with non-negligible probability) from the

current internal state, or from current or previous output values. NOTE: The enhanced forward

secrecy may be ensured by reseeding or refreshing the DRNG internal state, which may be

performed automatically or initiated on user demand.

NIST-BSI Terminology Cross Reference.

RBG = RNG

NRBG = PTRNG or Hybrid PTRNG

DRBG = DRNG

Backtracking Resistance = Enhanced Backward Secrecy

Prediction Resistance = Enhanced Forward Secrecy

CS128M IMPLEMENTATION DETAILS

1. CS128M Construction.

The cryptographically strong random number generator CS128M is AIS 20/31 Class PTG.3-

compliant Hybrid PTRNG, or SP 800-90C-compliant NRBG as defined by NIST. The AIS 20/31

Class PTG.3 was selected to guarantee the highest RNG security level as defined by AIS 20/31.

In pursuance of complying with both standards, the NIST SP 800-90C XOR-NRBG construction

15

was selected in order to be compliant with NIST’s RBG construction recommendations and

satisfy AIS 20/31 Class PTG.3 requirements.

The construction includes:

1) Entropy source model as defined by SP 800-90B and AIS 20/31.

2) Health tests in accordance with SP 800-90[A/B] and AIS 20/31 standards.

3) An approved SP 800-90A DRNG method that is also AIS 20/31 DRG.3 compliant.

Entropy Source

Noise

Sources

Health

Test

Buffer:

Entropy Pool

DRNG

Memory:

Internal State

Known-

answer Test

CTR_DRBG:

AES-256

RNG Control Unit

&

Health Tests

Full Entropy

Figure 1: CS128M RNG Construction Model

RNG output

16

2. CS128M Entropy Source.

The CS128M entropy source is modeled in accordance with both standards (See Part 1 for

an in-depth description of the entropy source model and entropy estimation). The entropy source

sub-boundary contains three redundant noise sources and a health test component. The health test

component includes start-up tests and continuous tests on the noise sources.

2.1 NIST SP 800-90B Requirements.

This section describes the steps taken to comply with NIST SP 800-90B recommendations

for entropy sources. NIST SP 800-90B requires the following implementation:

1) Entropy model validation.

2) Health tests of the internal raw data.

a. Continuous and start-up tests that meet NIST detection requirements.

i. Both tests must run over at least 1024 consecutive samples.

ii. Tests performed on noise sources before any conditioning or post-

processing.

b. On-demand health tests.

c. The source shall notify the consuming application and halt the output when health

test fails.

2.1.1 CS128M Entropy Source Model and Estimation.

See Part 1 for a comprehensive description of the entropy source model and calculation.

Entropy Source

Entropy

Source 1

Health

Tests

Entropy

Source 2

Entropy

Source 3

stream output

Figure 2: CS128M Entropy Source Sub-boundary

17

2.1.2 CS128M Entropy Source Health Tests Implementation.

NIST provides two approved health tests: the Repetition Count Test and the Adaptive

Proportion Test. NIST allows developer-defined tests that meet the requirements for a

substitution of those approved tests. The goal of the Repetition Count Test is to quickly detect

catastrophic failures that cause the noise source to be stuck on a single output. The Adaptive

Proportion Test is designed to detect a large loss of entropy that might occur from the result of

some physical failure or environmental change that affects the noise sources.

Developer-defined alternative tests were implemented that meet the requirements of the

NIST approved tests.

1) The startup and continuous monitoring include 1/0 bias, 1st order autocorrelation and an

estimated entropy of each of these three sources and the final output.

a. At startup, random data will not be output until a block of 1,048,576 bits (220 bits)

from at least two of the three redundant entropy sources has produced the required

minimum estimated entropy level.

b. Monitoring is continuously run for every subsequent block of 1,048,576 bits.

2) In addition to the startup and continuous testing, the three independent entropy sources

raw output data streams and the final combined raw output stream are made available on-

demand, offline for direct statistical testing.

3) The 1/0 bias and 1st order autocorrelation tests detect total failure of each of these noise

sources and final output stream. The internal hardware monitoring requires at least two of

the three entropy sources to have estimated entropy of at least 0.999 bits/bit. If this

requirement fails, the output from the RNG is automatically halted. Output bits are also

tested for entropy, and the RNG will be halted if the output estimated entropy falls below

0.999 bits/bit.

2.2 AIS 20/31 PTG.3 Entropy Source Requirements.

This section describes the steps taken to comply with AIS 20/31 PTG.3 requirements for

entropy source. The class PTG.3 defines requirements for RNGs that must include PTG.1 and

PTG.2 definitions with the addition of a cryptographic post-processing algorithm that is DRG.3-

conformant (discussed in Section 4.2.1). AIS 20/31 entropy source component requires:

1) A stochastic model of the physical RNG that quantifies the distribution of random

numbers.

2) Total failure test of the entropy source.

3) Online tests of raw random numbers and internal random numbers (conditioned).

2.2.1 CS128M Stochastic Model.

See Part 1 for an in-depth description of the entropy source model and estimation.

18

2.2.2 CS128M Entropy Source Internal Tests Implementation

Section 2.1.2, CS128M Entropy Source Health Tests, describes the internal tests

implemented to detect total failure of the entropy source raw numbers, and online tests that

detect non-tolerable defects that may be affected by some physical failure or environmental

change. The CS128M entropy source does not require any whitening or conditioning algorithms,

therefore no conditioned random numbers are required to be tested.

3. CS128M Entropy Pool.

The entropy pool sub-boundary is a circular buffer implemented to transfer entropy from an

approved entropy source to the DRNG and final RNG output. The entropy pool is accessed by

the DRNG for seeding initialization/reseeding of its internal states, and accessed by the RNG for

generating the final output by XORing 128 bits of fresh full entropy with the DRNG output

cipher block (128 bits). The data fills on demand by either DRNG or final RNG XOR output

request. During health test mode, the Known-Answer Test module of the DRNG sub-boundary

will feed the entropy pool by injecting test vectors used to seed DRNG (RNG output is disabled

during test mode).

4. CS128M DRNG.

The DRNG selected is the NIST approved block cipher DRBG mechanism in the counter

mode, CTR_DRBG, using the approved cryptographic algorithm AES with security strength of

256 bits (AES-256). The DRNG sub-boundary contains the secret internal states; the AES block

cipher mechanism and a health test component, Known-Answer Test (KAT).

4.1 NIST SP 800-90A Requirements.

NIST provides a functional model of a DRBG. A DRBG shall implement an approved

DRBG mechanism from SP 800-90A and at least one approved randomness source. The DRBG

construction includes the following components:

DRNG

Memory:

Internal State

Known-

answer Test

CTR_DRBG:

AES-256

Figure 3: CS128M DRNG Sub-boundary

19

1) Entropy Input source follows NIST 800-90B Recommendations.

a. Entropy input and the seed shall be kept secret.

b. The randomness source shall provide input that supports the security strength

requested by the DRBG mechanism.

2) Internal state.

a. Memory of the DRBG and consists of all of the parameters, variables and other

stored values that the DRBG mechanism uses or acts upon.

b. The internal state contains both administrative data (e.g., the security strength)

and data that is acted upon and/or modified during the generation of

pseudorandom bits (i.e., the working state).

3) DRBG Mechanism.

a. The instantiate function acquires entropy input to create a seed from which the

initial internal state is created.

b. The generate function generates pseudorandom bits upon request, using the

current internal state.

c. The update function generates new internal state for the next output request.

d. The reseed function acquires new entropy input and combines it with the current

internal state to create a new seed and a new internal state.

e. The uninstantiate function zeroizes (i.e., erases) the internal state.

f. The health test function determines that the DRBG mechanism continues to

function correctly.

4.1.1 CS128M DRNG Entropy Input.

The CS128M DRNG entropy input source follows NIST 800-90B Recommendations. The

entropy source provides randomness that supports the security strength requested by the DRNG

mechanism without any entropy conditioning, personalization string or additional input

(derivation function). The entropy source input and the seed are always kept secret. (See Section

2. CS128M Entropy Source)

4.1.2 CS128M DRNG Internal State and Mechanism Implementation.

The CS128M DRNG internal state and cryptographic mechanism were implemented to meet

NIST 800-90A requirements as described below:

1) CS128M CTR_DRBG DRNG uses the AES cryptographic primitive with security

strength of 256 bits (AES-256) in counter mode.

2) DRNG is instantiated with random input from the entropy source prior to output

generation.

3) DRNG is reseeded with fresh entropy from the entropy source a little over 15 times per

second.

4) The output rate (generate function) of the DRNG does not exceed its input data rate, for

every 128 bits input, an output of 128 bits is generated.

20

5) Known-answer test (KAT) is implemented within the DRNG mechanism boundary.

a. Testing is conducted on each DNRG function prior to the first use (at boot-up

after initial entropy health test is passed) and immediately prior to each reseeding

of the internal states (reseed flag triggers KAT, which is run before reseed

function). The KAT is always run prior to reseeding the internal states to

frequently ensure reliability of the output.

b. If the DRNG fails the KAT, or a catastrophic error is detected during boot-up or

normal operation, the DRNG enters an error state and output is halted. When in

this error state, user intervention (power cycling of the device) is required to exit

the error state, and the DRNG will re-instantiate before producing new output (as

long as all health tests pass again).

c. KAT test vectors used were acquired directly from NIST at

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-

program/random-number-generators.

The DRNG has fixed parameters without the option for user input:

Definitions for the CS128M CTR_DRBG AES-256

Security Strength 256

Input and output block length (blocklen) 128

Key length (keylen) 256

Seed Length (seedlen = blocklen + keylen) 384

Min/Max entropy input length seedlen

Number of bits per output 128

Number of outputs between reseeds

(reseed_interval)

65536

Table 5

4.2 AIS 20/31 DRG.3-Compliant DRNG Requirements.

The class DRG.3 defines requirements for deterministic RNGs. The DRG.3 functional

security requirements are defined below:

1) Initiated with random seed from a PTRNG of class PTG.2 as random source.

2) DRNG provides forward secrecy.

3) DRNG provides backward secrecy.

4) DRNG provides enhanced backward secrecy.

5) DRNG output rate cannot exceed input rate.

6) Known-answer test of the cryptographic post-processing algorithm to detect whether the

algorithm was implemented and/or continues to operate correctly. Random number

output is not allowed if failure is detected.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/random-number-generators
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/random-number-generators

21

4.2.1 CS128M DRG.3-compliant DRNG Mechanism.

The AIS 20/31 standard provides a list of suitable DRNG implementation examples such as

the NIST SP 800-90A approved methods [AIS 20/31, pp. 120-129]. The selected NIST

CTR_DRBG DRNG meets and exceeds the requirements of class DRG.3.

1) The DRNG is initiated with an approved PTRNG of class PTG.2 as random source. See

Section 2.2.1 for entropy source implementation.

2) The NIST CTR_DRBG AES-256 DRNG’s inherited design provides backward and

forward secrecy due to its one-way output function implementation.

3) Enhanced backward secrecy as required by DRG.3 specifications is provided by selecting

an approved NIST SP 800-90A DRBG such as the one implemented in the design. All

DRBG mechanisms in the SP 800-90A Recommendation have been designed to provide

backtracking resistance [SP 800-90A1, p. 23].

4) Although enhanced forward secrecy is not required by PTG.3 specifications, periodic

reseeding of the internal states with fresh entropy was implemented to offer additional

defense against attacks and hardening of the RNG design. The CS128M construction

went beyond the minimum requirements of the PTG.3 specification by combining the

PTG.3 class with a DRG.4-compliant DRNG. Note, implementing the DRNG as DRG.4-

compliant does not mean the DRNG output is ‘extended’ in this design.

5) The output rate of our DRNG does not exceed the input rate, as specified by DRG.3

requirements.

6) KAT implemented to test the cryptographic post-processing algorithm (See Section

4.1.2).

7) Finally, the NIST XOR-NRBG construction XORs the DRNG output with fresh entropy

for every output of the RNG, which offers the highest level of reliability and protection

against attacks.

22

PART 3: VERIFICATION TESTING.

1. ComScire QNGmeter Real-Time Tester p. 23

2. NIST Statistical Test Suite p. 25

3. NIST SP 800-90B Entropy Source Validation p. 26

4. BSI AIS 31 Statistical Test Suite p. 29

5. DIEHARD Battery of Tests p. 30

23

ComScire QNGmeter: Continuous Random Number Tester.

The ComScire QNGmeter is a continuous real-time statistical tester that uses five powerful

and fundamentally different tests on the input data. Unlike other statistical test suites, it is

designed to measure the quality of randomness of a continuous sequence of bits up to hundreds

of terabits in length. The QNGmeter automatically performs metatests of subsequences, which

would have to be done manually by other popular test suites. Every QNG Model CS128M is

tested extensively after production and finally just before shipment using the QNGmeter test

suite.

The five tests are:

1) 1/0 Balance – nominal expected value is p(1) = p(0) = 0.5.

2) Auto Correlation - orders 1 through 32, nominal expected value is 0.5 for all orders.

3) Entropy Test – nominal expected value is H = 1.0, an update of U. Maurer’s “Universal

Test” [Cor99].

4) Serial Test - (Good, I. J, The serial test for sampling numbers and other tests for

randomness, Proc. Camb. Philos. Soc. Vol. 49, 1953).

5) OQSO – Overlapping-Quadruples-Sparse-Occupancy test, nominal expected value for the

mean = 141909.47 and standard deviation (by simulation) = 294.656 (G. Marsaglia and

A. Zaman, Computers Math. Applic., Vol. 26, No. 9, pp 1-10, 1993).

The z-scores, p-values, and chi-square (metatest) p-values are presented for each test. In

addition, current test run time information, such as Bits Tested, Elapsed Time, Throughput, and

Bits Tested %, is displayed by the tester. Bits Tested is the total number of bits tested. Elapsed

Time is the time from the start of the current test run. Throughput is the input data rate in bits per

second. Bits Tested % is the percent of the total bits tested. This value might be less than 100%

due to limited CPU resources.

Each test uses blocks of data of varying lengths, depending on the specific test. The 1/0

Balance and Auto Correlation tests use a block size of 65,536 bits. The Serial test has a block

size of 262,144 bits. The Entropy test has 4,194,304 bits in a block. The OQSO test uses

10,485,775 bits per block.

A z-score is calculated for every test for each data-block. The z-scores are converted to

probabilities with the assumption they are normally distributed. The z-scores of the 1/0 Balance,

Auto Correlation and Serial tests and their associated p-values displayed are cumulative for all

blocks. The z-scores of the Entropy and OQSO tests are combined by summing the z-scores of

all blocks and dividing by the square root of the number of blocks, respectively.

A second level of testing is applied to the p-values calculated from the z-scores for each

block of data. The z-scores are expected to be normally distributed and their associated p-values

are expected to be uniformly distributed. A chi-square test is applied to the individual p-values

from each of the five tests. The chi-square tests are cumulative and their results are displayed as

probabilities. If these chi-square p-values converge to 0.0 or 1.0 for any test, the assumption of

randomness fails, indicating non-random patterns in the data being tested.

A third level of testing is applied to all of the individual chi-squared tests. A Kolmogorov-

Smirnov (KS) test is first applied to the probabilities of chi-squared results of all orders of auto

correlation being tested to reduce the auto correlation results to a single probability. A meta-meta

24

KS test is finally calculated using the auto correlation KS result and the probabilities of the chi-

squared metatest results of all the other tests. The meta-meta KS+ and KS- probabilities are

displayed. Convergence toward 1.0 or 0.0 indicates failure.

For the hardware validation report, the QNGmeter tests were completed on a QNG Model

CS128M using 195 trillion random bits. All metatest results for the device are recorded in the

following Table 6.

ComScire QNGmeter 195 Trillion Bits Tested

Testing QNG Device S/N QWR80001

Run Time Information Autocorrelation

Bits Tested 195E+12 Order p (χ2 ≤ x)

Time Elapsed 42:02:01:19 1 0.404578

Throughput 128E+6 2 0.093446

Meter 45.5+ 3 0.032575

1/0 Balance 4 0.935301

p (1) 0.5000000152 5 0.407691

p (z ≤ x) 0.663959 6 0.460052

p (χ2 ≤ x) 0.786957 7 0.514645

Entropy Test 8 0.913443

H 1.0000000215 9 0.368184

p (z ≤ x) 0.771255 10 0.810039

p (χ2 ≤ x) 0.002666 11 0.164418

Serial Test 12 0.783631

p (z ≤ x) 0.411508 13 0.793511

p (χ2 ≤ x) 0.278473 14 0.502610

OQSO (Monkey Test) 15 0.223676

p (z ≤ x) 0.269434 16 0.869196

p (χ2 ≤ x) 0.512343 17 0.711126

AC Meta KS- Test 18 0.153316

KS- 0.673715 19 0.523737

Meta-Meta KS Test 20 0.810293

KS+ 0.446843 21 0.588191

KS- 0.171989 22 0.596946

23 0.024276

24 0.604256

25 0.896055

26 0.694216

27 0.168779

28 0.287237

29 0.835736

30 0.833219

31 0.255023

32 0.924341

Table 6 – QNGmeter continuous test results for CS128M.

25

NIST Statistical Test Suite for the Validation of Random Number Generators.

The National Institute of Standards and Technology (NIST) provides a statistical testing

suite, specified in Special Publication 800-22rev1a, consisting of 15 tests that were developed to

test the randomness of binary sequences generated by a TRNG or PRNG. The NIST Statistical

Test Suite (NIST STS) software and documentation can be downloaded from their Cryptographic

Toolkit web page.

The NIST STS source code was compiled on a computer running Ubuntu 18.04. A number of

tests were completed to confirm the functionality of the software. The test suite contains sample

data files of 1,000,000 bits in length to be analyzed. These include the binary expansions of

constants e, π, √2 and √3. For each sample file, the NIST STS battery of tests were performed

and compared to the empirical results found in the SP800-22rev1a documentation Appendix B.

Following the confirmation that the test suite is operating properly, a binary file of 80,000,000

raw random bits in length was generated using our QNG Model CS128M (SN: QWR80001) to

be analyzed.

All test results are recorded in the following Table 7. The Block Frequency, Non-overlapping

Template Matching, Overlapping Template Matching, Approximate Entropy, Linear Complexity

and Serial tests require user prescribed input parameters. The exact values used in these

examples have been included in parenthesis beside the name of the statistical test. In the case of

the Non-overlapping Templates test, a Kolmogorov-Smirnov test (KS-test) was performed for

the collection of 148 P-values. In the case of the Random Excursions and Random Excursions

Variant tests, only one of the possible 8 and 18 P-values, respectively, has been reported.

NIST Battery of Tests Results

Statistical Test P-value

Frequency 0.350485

Block Frequency (m = 128) 0.911413

Cumulative Sums-Forward 0.122325

Cumulative Sums-Reverse 0.911413

Runs 0.066882

Long Runs of Ones 0.534146

Rank 0.350485

Spectral DFT 0.350485

Non-overlapping Templates (m = 9) 0.753260

Overlapping Templates (m = 9) 0.004301

Universal 0.350485

Approximate Entropy (m = 10) 0.534146

Random Excursions (x = +1) 0.685890

Random Excursions Variant (x = -1) 0.839877

Linear Complexity (M = 500) 0.534146

Serial (m = 16, ∇Ψ2
m) 0.911413

Serial (m = 16, ∇2Ψ2
m) 0.739918

Table 7 — NIST Test Suite Results for CS128M.

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html

26

NIST SP 800-90B Entropy Source Validation.

NIST Special Publication (SP) 800-90B provides a standardized process of validating the

entropy source quality. The process includes the following steps:

1) Data Collection

2) Determine the track (IID or Non-IID)

3) Initial Entropy Estimate

4) Restart Tests

5) Update Entropy Estimate

6) Entropy Validation

NIST offers software for the initial entropy estimation, restart tests and update entropy

estimation. The source code and documentation is available from NIST GitHub repository15. The

source code was compiled on a computer running Ubuntu 18.04. The included self-test was

performed to confirm the functionality of the software.

1. Data Collection.

A sequential dataset of at least 1,000,000 samples must be obtained directly from the noise

source to determine the initial entropy estimate. If the generation of 1,000,000 consecutive

samples is not possible, the concatenation of several smaller sets of consecutive samples from

the same source is allowed. Smaller sets shall contain at least 1,000 samples.

For the restart tests, the entropy source must be restarted 1,000 times; for each restart, 1,000

samples shall be collected.

2. Determine Entropy Track.

Entropy estimation is completed based on selecting from two different tracks: IID and non-

IID. The IID-track applies for entropy sources that provide IID (independent and identically

distributed) numbers, whereas the non-IID track applies for entropy sources that do not provide

IID numbers.

The CS128M entropy source provides IID numbers (see Part 1).

3. Initial Entropy Estimate.

The submitter shall provide an entropy estimate, denoted as Hsubmitter, for the noise source

outputs, which is based on the submitter’s analysis of the noise source. See Part 1 for in-depth

submitter entropy estimation. After determining the entropy estimation track, a min-entropy

estimate of the collected sequential dataset of 1,000,000 samples, denoted as Horiginal, is

calculated using the NIST software. Then, the initial entropy estimate is determined as HI = min

(Horiginal, Hsubmitter). Submitter entropy estimate, NIST initial entropy estimate, the initial min-

entropy estimate, and additional statistical tests results are reported in Table 8. Figure 4 is a

screenshot of the actual test run.

15 https://github.com/usnistgov/SP800-90B_EntropyAssessment

https://github.com/usnistgov/SP800-90B_EntropyAssessment

27

NIST SP 800-90B Entropy Assessment

Initial Entropy Estimate

Statistical Test Results

Hsubmitter 8.000000

Horiginal 7.963649

HI = min (Horiginal, Hsubmitter) 7.963649

Chi Square Tests PASS

Length of Longest Repeated

Substring Test
PASS

IID Permutation Tests PASS

Table 8 — NIST Initial Entropy Estimate for CS128M.

Figure 4: NIST IID-Track Initial Entropy Estimate Test for CS128M

28

4. Entropy Validation: Restart Tests and Update Entropy Estimate

The restart tests re-evaluate the entropy estimation for the noise source using different

outputs from many restarts of the noise source. A matrix M of row r =1,000 and column c =

1,000 is constructed from the collection of restart samples. Sanity check is performed on the

matrix M prior to calculating entropy estimates on the row and column datasets. The entropy

estimates from the row (Hr) and the column (Hc) datasets are expected to be close to the initial

entropy estimate HI. If the minimum of Hr and Hc is less than half of HI, the validation fails, and

no entropy estimate is awarded. Otherwise, the entropy assessment of the noise source is taken as

the minimum of the row, the column and the initial estimates, i.e., min (Hr, Hc, HI). The results

are presented in Table 9. Figure 5 is a screenshot of the actual test run.

NIST SP 800-90B Entropy Assessment

Restart Tests and

Update Entropy Estimate

Statistical Test Results

HI 7.963649

Hr 7.891083

Hc 7.891083

min (Hr, Hc, HI) 7.891083

Restart Sanity Check PASS

Entropy Validation Test PASS

Table 9 — NIST Validation at Entropy Estimate for CS128M.

 Figure 5: NIST Restart Tests and Entropy Validation for CS128M

29

BSI AIS 31: Standard Statistical Test Suite.

The BSI AIS 31 Standard Statistical Test Suite consists of nine independent tests to examine

the randomness of binary sequences generated by the entropy source and the cryptographic post-

processing algorithm. The evaluation process is broken into two test procedures, A and B. Test

procedure A (Tests T0-T5) is applied to the post-processed final output of the RNG, or internal

random numbers. Test procedure B (T6-T8) is applied to the raw output data of the entropy

source. The goal is to ensure that the entropy per bit is sufficiently large prior to seeding the

post-processing algorithm.

The complete testing suite, including documentation and software, can be downloaded

directly from the BSI website16. A JAVA program is provided for simple use of the testing suite.

The AIS 31 tests require large binary files of raw and internal random numbers, at least

3,145,728 bits for Test T0 and 5,140,000 bits for Tests T1-T5, to be tested. Therefore, binary

files of 80 million raw and internal random bits in length were generated using our QNG Model

CS128M (SN: QWR80001) to be analyzed.

For the generated random data file all of the statistical tests were applied and the result

recorded in the following Table 10. In the case of the Test T8, Entropy Test, the bits of entropy

per byte has been reported.

BSI AIS 31 Battery of Test Results

Statistical Tests Results

T0 – Disjointness Test PASS

T1 – Monobit Test PASS

T2 – Poker Test PASS

T3 – Runs Test PASS

T4 – Long Run Test PASS

T5 – Autocorrelation Test PASS

T6 – Uniform Distribution Test PASS

T7 – Comparative Test for

Multinomial Distributions
PASS

T8 – Entropy Test PASS

T8 – Entropy Estimation

(bits of entropy per byte)
7.998949

Table 10 — AIS 31 Test Suite Results for CS128M.

16 https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip.zip

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip.zip

30

DIEHARD: A Battery of Tests of Randomness.

The DIEHARD Battery of Tests of Randomness, developed by Prof. George Marsaglia,

contains a collection of 15 tests to examine the randomness of binary sequences generated by a

TRNG or PRNG. The complete testing suite, including documentation and software, can be

found from the DIEHARD archived website17. Windows executable files are provided for simple

use of the testing suite. The DIEHARD tests require a large binary file of random integers, at

least 80 million bits, to be tested. Therefore, a binary file of 80 million raw random bits in length

was generated using our QNG Model CS128M (SN: QWR80001) to be analyzed.

For the generated random data file all of the statistical tests were applied and the resulting p-

values recorded in the following Table 11. In the case of the Birthday Spacings, Binary Rank

(6x8 matrices), OPSO, OQSO, DNA, Count-the-1’s (specified bytes), This is a Parking Lot, The

Minimum Distance, 3DSpheres, Overlapping Sums, and Runs (up & down) tests, only the K-S

tests are reported here.

DIEHARD Battery of Tests Results

Statistical Test p-value

Birthday Spacings 0.544478

Overlapping 5-Permutation 0.627684

Binary Rank (31x31) 0.715902

Binary Rank (32x32) 0.977584

Binary Rank (6x8) 0.362809

Bitstream 0.255699

OPSO 0.083799

OQSO 0.788372

DNA 0.388282

Count-the-1's (byte stream) 0.848490

Count-the-1's (specified bytes) 0.822120

This is a Parking Lot 0.016155

The Minimum Distance 0.255680

3DSpheres 0.910887

Squeeze 0.067427

Overlapping Sums 0.501066

Runs (up) 0.646677

Runs (down) 0.217652

Craps (no. of wins) 0.919992

Craps (throws/game) 0.662403

Table 11 — DIEHARD Test Suite Results for CS128M.

17 https://web.archive.org/web/20160113163414/http://stat.fsu.edu/pub/diehard/diehard.zip

https://web.archive.org/web/20160113163414/http:/stat.fsu.edu/pub/diehard/diehard.zip

31

Bibliography.

[AIS 20/31] A proposal for: Functionality Classes for Random Number Generators, BSI AIS 20 /

AIS 31 Version 2.0, Killmann, W., and Schindler, W., September, 2011,

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretatione

n/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=public

ationFile&v=1

[Cim19] Cimpanu, C., SHA-1 collision attacks are now actually practical and a looming danger,

Zero Day, May 13, 2019, Downloaded 11/20/19, https://www.zdnet.com/article/sha-1-

collision-attacks-are-now-actually-practical-and-a-looming-danger/

[Cor99] Coron, J.-S., On the Security of Random Sources. In H. Imai, & Y. Zeng (Eds.), Lecture

Notes in Computer Science, Vol. 1560, pp. 29-42, Springer-Verlag, 1999,

http://www.jscoron.fr/publications/entropy.pdf

[Dav02] Davies, R., Exclusive OR (XOR) and hardware random number generators, Feb. 28,

2002, Retrieved Nov. 24, 2019 from http://www.robertnz.net/pdf/xor2.pdf

[Per92] Peres, Y., Iterating von Neumann's Procedure for Extracting Random Bits. The

Annals of Statistics, pp590-597, Vol. 20(1), 1992.

https://projecteuclid.org/download/pdf_1/euclid.aos/1176348543

[San86] Santha, M., & Vazirani, U., Generating Quasi-Random Sequences from Semi- Random

Sources, Journal of Computer and System Sciences, Vol. 83, pp. 75-87, 1986,

http://www.eecs.berkeley.edu/~vazirani/pubs/quasi.pdf

[Sar19] Sardi, S., Uzan, H., et al, Embedding information in physically generated random bit

sequences while maintaining certified randomness, Europhysics Letters, 127(6), Nov. 5,

2019.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUK

EwiY9Zy55YPmAhWN9Z4KHSDwD-

wQFjABegQIAhAC&url=https%3A%2F%2Farxiv.org%2Fpdf%2F1911.00001&usg=A

OvVaw1BjXvy7xpcdfHBh5A9Ayrx

[Sha48] Shannon, C., A Mathematical Theory of Communication, Bell System Technical

Journal, Vol. 27, 379-423; 623-656, Jul.; Oct., 1948,

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=2ahUK

Ewi4kuvp04PmAhUYvJ4KHXQPDpoQFjAGegQIBRAC&url=http%3A%2F%2Fwww

.nd.edu%2F~powers%2Fame.20231%2Fshannon1948a.pdf&usg=AOvVaw1M_h1uOvs

VZq0CM-7WyMkH

[Skó15] Skórski, M., Shannon Entropy versus Renyi Entropy from a Cryptographic Viewpoint,

15th IMA International Conference on Cryptography and Coding, Dec., 2015,

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uac

t=8&ved=2ahUKEwj1vuTTkevlAhXW7Z4KHX81CDsQFjAAegQIBhAC&url=https%

3A%2F%2Feprint.iacr.org%2F2014%2F967.pdf&usg=AOvVaw1RSA_TEjcGUFLeR_

97k9b8

[SP 800-133] Recommendation for Cryptographic Key Generation, NIST Special Publication

800-133, Barker, E. and Roginsky, A., Dec., 2012,

http://dx.doi.org/10.6028/NIST.SP.800-133

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile&v=1
https://www.zdnet.com/article/sha-1-collision-attacks-are-now-actually-practical-and-a-looming-danger/
https://www.zdnet.com/article/sha-1-collision-attacks-are-now-actually-practical-and-a-looming-danger/
http://www.jscoron.fr/publications/entropy.pdf
http://www.robertnz.net/pdf/xor2.pdf
http://www.robertnz.net/pdf/xor2.pdf
https://projecteuclid.org/download/pdf_1/euclid.aos/1176348543
http://www.eecs.berkeley.edu/~vazirani/pubs/quasi.pdf
http://www.eecs.berkeley.edu/~vazirani/pubs/quasi.pdf
http://www.eecs.berkeley.edu/~vazirani/pubs/quasi.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwiY9Zy55YPmAhWN9Z4KHSDwD-wQFjABegQIAhAC&url=https%3A%2F%2Farxiv.org%2Fpdf%2F1911.00001&usg=AOvVaw1BjXvy7xpcdfHBh5A9Ayrx
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwiY9Zy55YPmAhWN9Z4KHSDwD-wQFjABegQIAhAC&url=https%3A%2F%2Farxiv.org%2Fpdf%2F1911.00001&usg=AOvVaw1BjXvy7xpcdfHBh5A9Ayrx
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwiY9Zy55YPmAhWN9Z4KHSDwD-wQFjABegQIAhAC&url=https%3A%2F%2Farxiv.org%2Fpdf%2F1911.00001&usg=AOvVaw1BjXvy7xpcdfHBh5A9Ayrx
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwiY9Zy55YPmAhWN9Z4KHSDwD-wQFjABegQIAhAC&url=https%3A%2F%2Farxiv.org%2Fpdf%2F1911.00001&usg=AOvVaw1BjXvy7xpcdfHBh5A9Ayrx
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=2ahUKEwi4kuvp04PmAhUYvJ4KHXQPDpoQFjAGegQIBRAC&url=http%3A%2F%2Fwww.nd.edu%2F~powers%2Fame.20231%2Fshannon1948a.pdf&usg=AOvVaw1M_h1uOvsVZq0CM-7WyMkH
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=2ahUKEwi4kuvp04PmAhUYvJ4KHXQPDpoQFjAGegQIBRAC&url=http%3A%2F%2Fwww.nd.edu%2F~powers%2Fame.20231%2Fshannon1948a.pdf&usg=AOvVaw1M_h1uOvsVZq0CM-7WyMkH
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=2ahUKEwi4kuvp04PmAhUYvJ4KHXQPDpoQFjAGegQIBRAC&url=http%3A%2F%2Fwww.nd.edu%2F~powers%2Fame.20231%2Fshannon1948a.pdf&usg=AOvVaw1M_h1uOvsVZq0CM-7WyMkH
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=2ahUKEwi4kuvp04PmAhUYvJ4KHXQPDpoQFjAGegQIBRAC&url=http%3A%2F%2Fwww.nd.edu%2F~powers%2Fame.20231%2Fshannon1948a.pdf&usg=AOvVaw1M_h1uOvsVZq0CM-7WyMkH
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwj1vuTTkevlAhXW7Z4KHX81CDsQFjAAegQIBhAC&url=https%3A%2F%2Feprint.iacr.org%2F2014%2F967.pdf&usg=AOvVaw1RSA_TEjcGUFLeR_97k9b8
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwj1vuTTkevlAhXW7Z4KHX81CDsQFjAAegQIBhAC&url=https%3A%2F%2Feprint.iacr.org%2F2014%2F967.pdf&usg=AOvVaw1RSA_TEjcGUFLeR_97k9b8
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwj1vuTTkevlAhXW7Z4KHX81CDsQFjAAegQIBhAC&url=https%3A%2F%2Feprint.iacr.org%2F2014%2F967.pdf&usg=AOvVaw1RSA_TEjcGUFLeR_97k9b8
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwj1vuTTkevlAhXW7Z4KHX81CDsQFjAAegQIBhAC&url=https%3A%2F%2Feprint.iacr.org%2F2014%2F967.pdf&usg=AOvVaw1RSA_TEjcGUFLeR_97k9b8
http://dx.doi.org/10.6028/NIST.SP.800-133

32

[SP 800-90B] Recommendation for the Entropy Sources Used for Random Bit Generation, NIST

Special Publication 800-90B, Turan, M. S., Barker, E., et al, Jan., 2018,

https://doi.org/10.6028/NIST.SP.800-90B

[SP 800-90A1] Recommendation for Random Number Generation Using Deterministic Random

Bit Generators, NIST Special Publication 800-90A Rev. 1, Barker, E., and Kelsey, J.,

June, 2015, http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

[SP 800-90C] Recommendation for Random Bit Generator (RBG) Constructions, DRAFT NIST

Special Publication 800-90C, Barker, E., & Kelsey, J., 1-45, Aug., 2012,

http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90c.pdf

[Ste01] Steele, J., Random Walks and First Step Analysis, pp. 1-9. In: Stochastic calculus and

financial applications, Springer-Verlag New York, NY, I. Karatzas & M. Yor, Eds.,

2001.

[Wil05] Wilber, S., U.S. Patent No. 6,862,605 B2, Mar., 2005,

http://www.freepatentsonline.com/6862605.pdf

[Wil13] Wilber, S. A., Entropy Analysis and System Design for Quantum Random Number

Generators in CMOS Integrated Circuits, July 5, 2013, Downloaded Dec. 5, 2019,

https://coreinvention.com/wp-content/uploads/2022/08/Pure_Quantum_White_Paper-

1.pdf

https://doi.org/10.6028/NIST.SP.800-90B
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90c.pdf
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90c.pdf

