

LIBQWQNG Version 1.4

ComScire QNG Device Linux Driver

2

comscire.com © 2019 Quantum World Corporation

Table of Contents

 1. General Information pg 3

 2. Installation pg 3

 3. Build LIBUSB-1.0 pg 4

 4. Build LIBFTDI1 pg 5

 5. Build LIBQWQNG-1.4 pg 6

 6. QNG Device's Permission pg 6

 7. Test Installation pg 8

 8. QNGmeter pg 8

 9. API Reference pg 9

 10. Appendix A pg 13

https://comscire.com/

3

comscire.com © 2019 Quantum World Corporation

1. General Information

LIBQWQNG-1.4 a library which allows access to ComScire QNG devices.

LIBQWQNG requires the open source library LIBFTDI1 installed. In addition,

LIBUSB 1.0 API is needed by LIBFTDI1 to access FTDI devices.

*** WARNING *** LIBUSB by design allows other applications to assume control

of any USB device including QNG devices. It is recommended that only one QNG

device can be attached to any computer. This is a possible security issue of Linux that

is out of our control.

The official web site is:

 https://comscire.com

Contact at:

 <contact@comscire.com>

2. Installation

ComScire QNG devices are accessed through LIBFTDI1 library. This library can be

installed using different methods such as: using the software manager of the

distribution, using the supplied LIBFTDI1 source package found in the unpacked

install root directory, download source packages from LIBFTDI1 web site, or

download using git repository.

We provide BASH scripts (located in the installation source package) to compile

and install LIBQWQNG and all of its prerequisites on Ubuntu system. For other

Linux Distributions, manually install by following the instructions in Steps 3 to 6.

Entire Source code for manual installation is found in the installation source package.

***Prior to installation, your environment will need to be setup in order to compile

the necessary libraries. GNU C, C++ and CMake compilers are needed (Optional:

Doxygen package if you want API documentations generated; git package if you

want to download LIBFTDI through git repository).

Installing from Script:

2.1. Make sure the archive packages and the scripts are in the same root

directory.

2.2. Copy the installation package to your hard drive and unpack.

https://comscire.com/
https://comscire.com/
mailto:contact@comscire.com

4

comscire.com © 2019 Quantum World Corporation

 Change directory to install directory.

 $ cd "../path-to-dir"

2.3. Give execution permissions to the script for your OS/Arch

 $ sudo chmod +x ubuntu-x64.sh

2.4. Run the script with admin privileges

 $sudo ./ubuntu-x64.sh

Manual installation:

3. Build the LIBUSB-1.0

3.1. Download LIBUSB-1.0 and LIBUSB-1.0-dev packages from

distribution's package manager. LIBUSB-1.0-dev package contains the header

files and documentation needed to develop applications using LIBQWQNG

library. If packages not available through software manager use the provided

library found in the installation package root directory or download from the

third-party library’s website. See Section 3.2 for manual installation.

a) UBUNTU:

 Download from repository using terminal:

 # sudo apt-get install libusb-1.0-0 libusb-1.0-0-dev

 b) Other Linux Distributions:

We provide a copy of libusb in the installation package. Go to Section 3.2

3.2. Unpack the supplied libusb source package or download the latest source

archive package version from address:

 http://sourceforge.net/projects/libusb/files/libusb-1.0/

3.2.1. Unpack the archive package. Open terminal, build source as root.

 $ cd ~/libusb-1.0.x/

 $./configure

https://comscire.com/
http://sourceforge.net/projects/libusb/files/libusb-1.0/

5

comscire.com © 2019 Quantum World Corporation

 $ make

 # make install

3.3. Make symbolic link of libusb.h header file as root.

ln -s /usr/local/include/libusb-1.0/libusb.h /usr/local/include/libusb.h

4. Build the LIBFTDI1

4.1. If not available on distribution's software management list, use the

supplied LIBFTDI1 source package or download the latest source package

version from address:

 http://www.intra2net.com/en/developer/libftdi/download.php

Unpack archive package. In terminal, go to directory of unpacked archive then

proceed to Section 4.3 for installation instruction.

 4.2. LIBFTDI1 requires CMake package for compilation. Installing

 CMake and other optional packages used by LIBFTDI-1.0 are found in

 Appendix A. Optional packages are not needed for basic functions of

 LIBQWQNG-1.4 API.

 4.3. Go to new directory libftdi-x (substitute x with version).

 $ cd ~/libftdi1-x/

 4.3.1. Build and install source as root

 $ cmake ~/libftdi-x/

 $ make

 # make install

 4.4. Make symbolic link of ftdi.h header file as root.

 # ln -s /usr/local/include/libftdi1/ftdi.h /usr/local/include/ftdi.h

https://comscire.com/
http://www.intra2net.com/en/developer/libftdi/download.php

6

comscire.com © 2019 Quantum World Corporation

5. Build the LIBQWQNG-1.4

 5.1. Compiling LIBQWQNG-1.4 requires CMake. LIBFTDI and LIBUSB

 libraries must be installed successfully prior to compiling LIBQWQNG-1.4.

 Optional: Doxygen package is needed to generate LIBQWQNG API

 documentation. LIBQWQNG API Reference is provided in this document. See

 Section 8 for API reference if you wish not to install Doxygen and generate

 API documentation.

 5.2. Unpack the LIBQWQNG-1.4 source package and go to new directory.

 Open terminal, build source and install as root.

 $ cd ~/libqwqng-1.4/

 $ cmake ~/libqwqng-1.4/

 $ make

 # make install

6. QNG Device's Permission

6.1. UDEV rules must be modified to allow users to access ComScire's QNG

devices. An UDEV .rules file (45-libqwqng.rules) is supplied in ~/libqwqng-

1.4/packages/ directory. These rules set read/write permissions and assign

QNG devices to the plugdev group. Users must be members of plugdev group

to access the QNG devices.

Installation of LIBQWQNG-1.4 library attempts to install these rules into the

/etc/udev/rules.d/ directory. If copying of rules fail, manual installation is

necessary (see Section 6.2).

6.1.1. If install successful, restart UDEV as root (unplug QNG device if

connected) or reboot computer if udevadm command is not available in your

distribution.

 # udevadm control --reload-rules

 6.2. Manual Installation: As root, copy 45-libqwqng.rules into

 /etc/udev/rules.d/ directory.

 # cp ~/libqwqng-1.4/packages/45-libqwqng.rules /etc/udev/rules.d/

https://comscire.com/

7

comscire.com © 2019 Quantum World Corporation

 6.2.1. UDEV must be restarted (unplug QNG device if connected). Note:

 Must restart OS if udevadm command is not available in your distribution.

 # udevadm control --reload-rules

 6.3. Adding plugdev group

 6.3.1. First check if user is in plugdev group.

 $ groups

6.3.2. If your user is not in the group plugdev, check if your system already

has the group plugdev:

 $ grep plugdev /etc/group

 If the previous command displays a line beginning with:

 plugdev:x:

 then your system has the group plugdev.

6.3.3. When the grep command does not display any message, then the plugdev

group doesn't exist on your system. as root create the plugdev group:

 # groupadd plugdev

6.3.4. As root add the user USER to the group plugdev (substitute your own

login name for USER:

 # usermod -G plugdev -a USER

 Reboot.

 6.4. CentOS --

There is a solution for the UDEV permissions in CentOS if supplied rules do

not work. Instead of getting your machine to recognize the 45-libqwqng.rules,

edit file /etc/udev/rules.d/50-udev.rules directly.

 Comment out line 343 (may be different in your file):

https://comscire.com/

8

comscire.com © 2019 Quantum World Corporation

 CODE--

 ACTION=="add", SUBSYSTEM=="usb_device", \

 PROGRAM=... , \

 # NAME="%c", MODE="0644"

 and add line:

 NAME="%c", MODE="0666"

 Reboot.

7. Test Installation

 7.1. Connect device and run QNGmeter application found in
 ~/libqwqng-1.4/qngMeter directory.

 $./qngMeter/qngmeter

7.2. Connect device and run test applications found in ~/libqwqng-

1.4/examples directory.

 $./examples/clear

 $./examples/deviceid

 $./examples/diagnostics

 $./examples/errorhandl

 $./examples/randbytes

 $./examples/randint32

 $./examples/randnormal

 $./examples/randuniform

 $./examples/reset

 $./examples/runtimeinfo

8. QNGmeter

The ComScire QNGmeter is a continuous statistical tester that uses five

powerful and fundamentally different tests on the input data. All tests are

designed to provide reliable results for up to 100 terabits of test data. Some

tests (OQSO, Entropy, and Serial) have approximate test result distributions

https://comscire.com/

9

comscire.com © 2019 Quantum World Corporation

and the test results will become unreliable for extremely large test data

quantities.

 For more information, see QNGmeterDoc.html file in ~/libqwqng-1.4/

 directory.

9. API Reference

 8.1. RandInt32 --

 int RandInt32(long* pVal)

 Returns

 Random 32 bit integer as LONG.

Remarks

RandInt32 property returns a 32 bit random integer. Each RandInt32 integer

contains 32 bits of entropy.

 8.2. RandUniform --

 int RandUniform(double* pVal)

 Returns

 Random uniform number [0,1) as DOUBLE.

 Remarks

 RandUniform property returns a double float that is randomly selected from

 a uniform distribution. Each RandUniform number contains 48 bits of

 entropy.

 8.3. RandNormal --

 int RandNormal(double *pVal)

 Returns

 Random normal number with mean zero and standard deviation one as

 DOUBLE.

 Remarks

 RandNormal property returns a double float that is randomly selected from a

 normal distribution. RandNormal numbers are produced by transforming

 uniform numbers, with 48 bits of entropy each, into normal numbers using the

 Box-Muller method.

https://comscire.com/

10

comscire.com © 2019 Quantum World Corporation

 8.4. RandBytes --

 int RandBytes(char* pVal, long length)

Parameters

 Length: Number of bytes to be returned from RandBytes. Must not exceed

8192 for generator output rate of 32 Mbps or less, 65536 for generator output

rate of 64 or 128 Mbps.

Returns Byte array as 8 bit character.

Remarks

RandBytes property returns a byte array of random bytes. Each byte contains 8

bits of entropy. If Length exceeds maximum allowed requested bytes, the

control will return the QNG_E_IO_ARRAY_OVERSIZED error code.

 8.5. Clear --
 int Clear()

Remarks

Clear property purges internal data buffers. If random data is not continuously

consumed, random data will remain available in internal buffers. A call to

 Clear will remove "stale" data from the buffers.

 8.6. Reset --

 int Reset()

 Remarks

 Reset property closes the active hardware device, clears all buffers, then

 attempts to restart the hardware device.

 8.7. DeviceID --

 char* DeviceID()

 Returns

 Serial number as a sequence of characters.

 Remarks

 DeviceID property returns the device serial number as a sequence of

 characters. The serial number is typically 8 ASCII characters long.

 8.8. RuntimeInfo --

 int RuntimeInfo(float* pVal)

https://comscire.com/

11

comscire.com © 2019 Quantum World Corporation

 Returns

 Float array as 32 bit floating point numbers.

Remarks

RuntimeInfo property returns an array of 17 floating point numbers. The

numbers indicate the internal runtime state. Assuming a zero index based array:

runtimeInfo[0]: General statistical status. A zero (0) indicates that all internal

statistics are within expected ranges and a minus one (-1) indicates an

exception.

 runtimeInfo[1]: Entropy H(P) of final output channel.

 runtimeInfo[2]: Predictability value (P) of final output channel.

 runtimeInfo[3]: Bias of final output channel.

 runtimeInfo[4]: 1st order serial correlation of final output channel.

 runtimeInfo[5]: Entropy H(P) of 1st raw generator channel.

 runtimeInfo[6]: Predictability value (P) of 1st raw generator channel.

 runtimeInfo[7]: Bias of 1st raw generator channel.

 runtimeInfo[8]: 1st order serial correlation of 1st raw generator channel.

 runtimeInfo[9]: Entropy H(P) of 2nd raw generator channel.

 runtimeInfo[10]: Predictability value (P) of 2nd raw generator channel.

 runtimeInfo[11]: Bias of 2nd raw generator channel.

 runtimeInfo[12]: 1st order serial correlation of 2nd raw generator channel.

 runtimeInfo[13]: Entropy H(P) of 3rd raw generator channel.

 runtimeInfo[14]: Predictability value (P) of 3rd raw generator channel.

 runtimeInfo[15]: Bias of 3rd raw generator channel.

 runtimeInfo[16]: 1st order serial correlation of 3rd raw generator channel.

 8.9. Diagnostics --
int Diagnostics(char dxCode, char* dxInfo)

Parameters

Length: Fixed 128 bytes to be returned from Diagnostics.

Returns

Byte array as 8 bit character.

Remarks

Diagnostics is a property that returns a byte array of 128 bytes for a specified

internal pre-output raw data channel on a specific level of processing.

Diagnostics provides insight into three entropy combining levels of processing

in Pure Quantum® (PQ) and the final raw output stream in CryptoStrong™

https://comscire.com/

12

comscire.com © 2019 Quantum World Corporation

(CS) generators. Each successive level, beginning with level 1, combines more

entropy per bit towards the final output. The final output itself exceeds NIST

defined full entropy without utilizing correction, whitening, or conditioning.

Note that low-level pre-output data is not expected to look perfectly random.

Therefore, data gathered from Diagnostics should never be used in random

data consuming applications. The intention of Diagnostics is to allow

measurements into the pre-output generation levels to follow and confirm

theoretical generation models. More information on PureQuantum® and

CryptoStrong™ generation internals can be found in whitepapers published on

the ComScire website. Diagnostics allows access to three levels of pre-output

generation with three channels per level, and the final combined output for

CryptoStrong™ generators. The following lists corresponding hex Diagnostics

codes (dxCode) for each level and channel:

Level 1, Channel 1: 0x10

Level 1, Channel 2: 0x11

Level 1, Channel 3: 0x12

Level 2, Channel 1: 0x13

Level 2, Channel 2: 0x14

Level 2, Channel 3: 0x15

Level 3, Channel 1: 0x16

Level 3, Channel 2: 0x17

Level 3, Channel 3: 0x18

Final Output (CS Model only): 0x19

Note that there may be other undocumented Diagnostics codes (dxCode).

However, using these codes may produce unexpected outputs or results.

Nonetheless, random data obtained through the random API calls (RandInt32,

RandUniform, RandNormal, RandBytes) is entirely unaffected by

Diagnostics calls. Diagnostics is not supported on devices prior to the

PureQuantum® (PQ) and CryptoStrong™ (CS) models. Final output stream

(dxCode: 0x19) is only available in CryptoStrong™ models.

 8.10. Error Handling --

The LIBQWQNG library returns a set of error codes. All error conditions

will persist and can be cleared by a succesful Reset method call.

 Codes

 QNG_S_OK 00044400h

 QNG device reports success.

https://comscire.com/
http://www.comscire.com/

13

comscire.com © 2019 Quantum World Corporation

QNG_E_GENERAL_FAILURE 80044401h

 QNG general error.

QNG_E_IO_ERROR 80044402h

 QNG I/O error.

QNG_E_IO_TIMEOUT 80044403h

 QNG I/O request has timed out.

QNG_E_IO_ARRAY_OVERSIZED 80044404h

 QNG read array size exceeds max size.

QNG_E_STATS_EXCEPTION 80044406h

 QNG test statistics exception.

QNG_E_STATS_UNSUPPORTED 80044407h

 QNG stats not supported with this device.

QNG_E_DIAGX_UNSUPPORTED 80044408h

 QNG diagnostics not supported with this device.

QNG_E_DEVICE_NOT_OPENED 8004440Ah

 QNG device not found or already in use.

S_OK 00000000h

 No error occurred.

9. Appendix A

 9.1. Cmake Install

 LIBFTDI and LIBQWQNG require CMake package for compilation.

 a) UBUNTU:

 Download from repository using terminal:

 # sudo apt-get install cmake

 b) CentOS:

 Download from repository using terminal:

https://comscire.com/

14

comscire.com © 2019 Quantum World Corporation

 # yum install cmake

 c) If not available, download the latest release at:

 http://www.cmake.org/cmake/resources/software.html

 manually build and install.

 9.2. Doxygen Install –

 Doxygen package is needed to generate LIBFTDI and

 LIBQWQNG API documentations. LIBQWQNG API Reference is provided

 in Section 8. If Doxygen is not installed, disregard warning during

 compilation. If interested in Doxygen, see distribution's software manager for

 installation.

 a) UBUNTU:

 Download from repository using terminal:

 # sudo apt-get install doxygen

 b) CentOS:

 Download from repository using terminal:

 # yum install doxygen

 c) If not available on distribution's software management list, download

 Doxygen at:

 http://www.stack.nl/~dimitri/doxygen/download.html#latestsrc

 manually build and install.

https://comscire.com/
http://www.cmake.org/cmake/resources/software.html
http://www.stack.nl/~dimitri/doxygen/download.html#latestsrc

