
 1 

Advances in Mind-Matter Interaction Technology: 

Is 100 Percent Effect Size Possible? 

 

© 2013 Scott A. Wilber1 

 
Abstract: Very high-speed random number generators in conjunction with amplification 

algorithms can greatly enhance the measurements of anomalous effects and anomalous 

cognition. These measurements must be statistically significant and develop rapidly to 

become relevant and be useful in our everyday experience. Mathematical models based on 

a random-walk bias amplifier and experiments using GHz to THz true random bit 

generators hint at the possibility that measurements of mentally-influenced outputs of these 

generators can produce results approaching 100 percent of the corresponding intended 

outcomes, and at trial rates around one to two per second. Our experiments indicate 

feedback of results should optimally occur within about a quarter of a second of the 

generation of each trial so a trend may be noticeable in just a few seconds. Further, it is 

important the effect size be above a threshold of about 4 to 5 percent – but preferably much 

higher – to be psychologically “impressive.” 

 
Key words: Mind-Matter Interaction, Anomalous Effect, Bias Amplifier, Effect Size, 

Random Walk. 

 
INTRODUCTION 

 

Experiments intended to demonstrate the possibility mental intention can affect the measured 

outcome of a truly random process have been around for about 50 years(1-3). While the statistical 

evidence for the validity of this effect is widespread and persuasive, the magnitude of the effect or 

its effect size has been too small to be usable(4) or even psychologically interesting to many 

participating subjects. After years of research to overcome these limitations we discovered a 

method of efficiently converting a very small effect manifesting as a bias in a large number of bits 

into a much larger effect in a greatly reduced number of bits – a method we call bias amplification.2 

In order to utilize the power of bias amplification we developed technologies enabling faster and 

faster true random bit generators, sometimes referred to as random event generators (REG’s). The 

first such generators produced 16 Mbps, then an array of 64 of these generators produced an 

aggregate generation rate of 1 Gbps. Subsequently the rate has been steadily increased to nearly 1 

Tbps in a single device. 

 

In addition to the basic tools of bias amplification and extremely high-speed true random bit 

generators, a number of mathematical models have been developed to explain and quantify both 

the magnitude and expected behavior of the measured effects under various design conditions 

(References 4, 5 and in this paper). These models allowed us to put the results of various other 

researchers as well as our own into a context for comparison. They also provided a means of 

defining the apparent limits of this type of mind-matter interaction measurement and revealed some 

surprising possibilities. 

                                                 
1 President, Core Invention, Inc., swilber@coreinvention.com 
2 The idea of increasing the size of anomalous effects or anomalous cognition using algorithmic or statistical 

methods has been investigated and experimented with for decades. See for example: Radin, D., 1990-91(14), 

which includes an overview of earlier work by several authors. 

file:///C:/Users/Deb/Desktop/Wilber%20MMI%20Papers/swilber@coreinvention.com


 2 

MATHEMATICAL MODELING 

 

A bounded random walk is used as a bias amplifier as follows: a random walk with symmetrical 

bounds at plus and minus n positions from the center is incremented one step for each “1” in the 

input sequence and decremented for each “0.” If the bound in the positive direction is reached first, 

a “1” is produced at the output and the walk is reset to the center position. If the negative bound is 

reached first, a “0” is output and the walk is reset. 

 

Following are the basic relationships quantifying the performance of a random walk when used as 

a bias amplifier. Equations 1 and 2 are adapted from solutions derived from analysis of biased 

bounded random walks.(6) 
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where N is the average number of steps to either boundary as a function of n, the number of 

positions from the starting position to a boundary, and p, the probability of a “1” occurring in the 

input bits; and 
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where Pout is the probability of a “1” occurring in the output bits, i.e., the probability of the walk 

reaching the positive bound first. 

 

The amplification factor, Amp, is defined as the output effect size, ES, divided by the input effect 

size: 
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Additional useful relationships may be derived from equations 1 through 3: 
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giving N as a function of p and Pout. 

 

Statistical efficiency may be defined here as the number of bits a perfectly efficient method for 

achieving the stated statistical result, relative to a specific method or algorithm for producing the  
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same result.(8) Statistical efficiency3, SE, is equal to the amplification factor squared divided by N: 
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For small input ES (-0.05<ES<0.05) equation 5 simplifies to a function of Pout only: 
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Since the magnitude of the input ES is typically much smaller than 0.05, equation 6 can be used to 

plot efficiency versus Pout, which is effectively equivalent to the output hit rate, HR: 

 

 
 Fig. 1 

Statistical Efficiency of the random walk bias amplifier as a function of Pout. Note, 

efficiency is still quite high even when the output probability (effectively the experimental 

hit rate) is above 85%.  

 

By definition the average number of bits needed to compute a single output with probability Pout 

in a RWBA with Nrw input bits relative to a theoretically “perfect” bias amplifier using N0 bits is  

 

rwrw SENN /0=  7. 

 

From Fig. 1 a statistical efficiency of 0.8 is estimated at a hit rate of 85%. An SE of 0.8 means 

about 25% more bits are needed to produce a hit rate of 85% relative to a perfect bias amplifier. 

 

The function of a random walk bias amplifier (RWBA) is effectively distributive. That means a 

RWBA with a bound of X1 positions followed by an RWBA of X2 positions will produce the same 

result as a RWBA of X2 positions followed by one of X1 positions. The same result will also be 

produced by a single RWBA of X3 = X1× X2 positions. These properties are vital because they allow 

any number of parallel generators to be combined with no loss of generality or efficiency. The only 

practical restriction is that all bit streams combined at any level have had equal bias amplification. 

 

                                                 
3 In an earlier paper(4) Effstat is the square root of SE. The definition is changed here to provide a linear 

relationship with N. 
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A process of majority voting, sometimes called repeated guessing, means producing a single output 

bit from a binary input sequence based on whether there are more ones (a “majority”) or more zeros 

in the sequence. The number of bits in the input sequence is typically limited to odd numbers to 

avoid ties.  Majority voting (MV) may also be considered a type of bias amplifier, but its results 

are not strictly distributive. For moderate Pout, reversing the order of two MV’s with the output of 

the first feeding bits into the second produces nearly the same final output; at high Pout this 

compounded MV process begins to underperform the equivalent single MV using Nmv3 = Nmv1 × Nmv2 

input bits. 

 

Majority voting is always substantially less efficient than a random walk bias amplifier, and the 

efficiency becomes progressively worse as MV’s are concatenated, especially at high terminal 

Pout. For comparison purposes the MV approach to bias amplification will be elaborated. The 

following equation(7) yields the exact probability, Pout, of correctly “guessing” the intended target 

or outcome given an input with probability, p (p ≥ 0.5), and a sequence of binary guesses (input 

bits) of length, N: 
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where a = Ceiling[(N +1)/2].4 This equation is relatively simple, but it is only useful for fairly small 

N since the computation quickly becomes unwieldy. The range of the equation may be greatly 

extended by using logarithmic equivalents: 
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where the term Ln[Bin[N, s]] represents the natural log of the Binomial[N, s], which is calculated 

using a highly accurate approximation [see Appendix A]. Equation 9 extends the range of N at least 

up to millions, but this is still far short of the trillions necessary for a direct theoretical comparison 

to the performance of the RWBA. The MV process can be very accurately represented using a 

normal approximation to a fixed-length random walk assuming N is large: 

 

))12(( − pNFPout  10. 

 

where F(x) is the cumulative distribution function (CDF) of the normal distribution at x. The 

relative error in this approximation is less than 1% when N is as small as 21, and becomes 

insignificant at N >100,000. This approximation allows the derivation of a simple equation for N 

as a function of p and Pout: 

 
21 ))12/()(( − − pPoutFN  11. 

 

where )(1 yF −
 is the inverse distribution function (quantile function) of the normal CDF.  

                                                 
4 Ceiling rounds the argument to the next higher integer. 
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Figure 2 plots the statistical efficiency versus Pout (black curve) for majority voting and the relative 

efficiency curve (upper red) with respect to the random walk bias amplifier. It is immediately 

apparent the SE for the MV process is significantly less than for the RWBA. The peak SEmv is /2  

meaning at least 1.57 times the number of bits would be required by MV to accomplish a result 

equivalent to the RWBA. However, the relative efficiency continuously decreases as Pout 

increases. To achieve a hit rate of 99%, the majority vote process would require about 2.4 times the 

number of bits as a random walk bias amplifier. 

 

 
 Fig. 2 

Statistical Efficiency of a majority voting process as a function of Pout (black curve). The 

top curve (red) shows the relative efficiency for majority voting versus bias amplification. 

 

Equation 4 is used to calculate the average number of bits used to produce the specified hit rate 

given any input probability p. 

 

 
     Fig. 3 

Figure 3 shows the average number of steps a random walker takes to reach the bound to 

generate the specified hit rate at the bias amplifier output. The number of steps is equivalent 

to the average number of random bits used in each calculation. The top curve was generated 

using an input ES of 0.75 ppm and the bottom curve used 1.5 ppm. These are the 

approximate bounds achieved for experienced operators and peak performance 

respectively. 
 

Using the fact that ESppLn 2])1[( −− , equation 4 is simplified to the following 

approximation: 



 6 

( ) 22/
1

12 ES
Pout

Pout
LnPoutN 















 −
−−  12. 

 

where Pout is the output HR and ES is (2p-1).5 

 

For Pout close to 1.0, this further simplifies to 
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For Pout equal 0.99, Equation 13 becomes 2.3/ES2 (the exact numerator is about 2.25). Equation 

13 shows N increasing very slowly with increasing HR and demonstrates the apparent possibility 

of reaching an arbitrarily accurate mentally-intended response. Equation 13 also clearly indicates 

the importance of effect size of the input bits. 

 

These predicted results are based on some critical assumptions about how an operator’s conscious 

intention influences or interacts with true random number generators and the associated 

measurement and feedback system. Probably the most important assumption concerns how the 

effect of mental intention, commonly referred to as mind-matter interaction, enters the 

measurement/feedback system.(9) This subject has been debated by a number of researchers over 

the years, and there is still no conclusive answer. Radin (2006) published the following plot in his 

book, Entangled Minds(10) (p159, reprinted by permission from the author): 

 

 
Fig. 4 

 

The plotted data were interpreted to indicate the measured effect appeared to be a force-like or per-

bit phenomenon. Assuming these data were processed by a simple majority vote algorithm and 

using a few data points estimated from the figure, an approximate input ES was calculated using an 

inverse solution to the majority voting probability. This resulted in a per-bit ES of about 180 ppm 

or a p of about 0.50009 for “high” intention. For comparison, data taken from an earlier 

                                                 
5 In Wilber (2007) the output effect size was estimated as NCES  . Solving for N and comparing to 

equation 3, assuming statistical efficiency of 1.0, it is clear the constant, C, is the input ES, 2p-1. 
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publication(1) indicated an average ES of about 350 ppm on a per-bit basis. Other researchers, and 

even the same ones at different times, have proposed alternatives to the per-bit theory. One proposal 

is that the operator interacts with the equipment, presumably by subconscious decisions, to select 

the data epochs that will correspond to the intended outcome. Others propose the operator and the 

equipment, including the feedback or conscious “observation,” are in a type of entangled system. 

As such the operator and the measurement/observation are inseparable. This theory allows results 

to be measured forward or backward in time, as well as remotely (physically separated 

measurement equipment and operators).(11) 

 

Whatever the mechanism by which mind-matter interaction becomes apparent, it is not likely to be 

fully explained by any of the popular theories to date.(12) Our experiments use generation rates up 

to almost 1 THz. Individual outputs, including feedback to the operator, are typically generated 

during 0.2 second intervals. At the highest generation rate, about 164 billion bits are used for each 

measurement. Given an ES of about 100 ppm estimated from published research, we should easily 

have seen output hit rates of virtually 100%. Even at 10 ppm input ES, the resulting HR should 

have been 100%. Our actual measured peak hit rates are as high as about 80% for short periods, 

indicating a peak input ES of about 1.5 ppm, or about two orders of magnitude smaller than those 

reported by others. This discrepancy is too large to attribute to differences in equipment or 

experimental setup. It has been suggested the amount of time spent in acquiring data is an important 

factor.(13) We collect data extremely rapidly compared to other researchers, so this is a possibly 

significant difference. We also use extremely high-speed generators yielding an average entropy of 

only about 0.3-0.5 compared to the presumably near 1.0 bit/bit of entropy provided by other 

researchers’ low-speed generators. At first glance the entropy difference does not seem to account 

for the large difference in imputed input effect size, but a deeper analysis will certainly be required. 

 

On the other hand, we have been tracking the increase in output hit rate for about ten years as our 

random bit generation and processing rates have constantly increased. From the beginning the input 

effect size has been on the order of 1 ppm when measured using high-speed generators with 

cumulative generation rates of 1 GHz or faster. This represents a range in generation rates of about 

three orders of magnitude. Although it is not possible to determine an exact effective input p or 

output HR, the estimated values are nevertheless generally consistent with the bounds formed by 

the upper and lower curves of Figure 3. 

 

Description of Hardware – PRD Systems 

 

The latest round of hardware development includes three levels of random bit generation rates. 

Each of these use Field-Programmable Gate Arrays (FPGA) as the platform for high-speed 

generation and data processing. The Cyclone III FPGA family is produced by Altera Corporation. 

These devices were selected because we have extensive experience with the Altera FPGA’s, and 

the Cyclone family was found to provide a good balance between speed, size, cost and ease of 

TRNG implementation. Tests were also done using Actel and Xilinx FPGA’s. The Actel devices 

were not appropriate for this application and Altera devices were selected over Xilinx due primarily 

to our familiarity with them. 

 

The baseline device is called the “PsiDrive.” It uses a Cyclone III, part number EP3C10U256C8N 

with 10,320 logic elements (LE) to produce a combined TRNG generation rate of 6.4 GHz. This 

generation rate is achieved by running 32 – 200 MHz generators in parallel. Each generator includes 

two independent ring oscillators with multiple taps that are combined in XOR gates to produce two 

high-speed enhanced outputs. The enhanced outputs are sent through a series of delay lines with 

multiple taps and the delayed signals from each enhanced output are combined in unique pairs in 
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XOR gates. The combined outputs are then latched, and finally the latched outputs are combined 

in XOR gates into a single, raw random bit stream at 200 MHz. The raw bits are then whitened by 

a linear feedback shift register (LFSR) randomness corrector to produce the usable output. The 

corrected bits have extremely low statistical defects: less than 10-20 ppb (actual measured levels) 

of 1/0 bias and first-order autocorrelation. This unusually stringent requirement for statistical 

quality of the random sequences is necessary because the subsequent processing would amplify 

any stationary bias or autocorrelation resulting in biased outputs. A fundamental requirement of 

any psycho-responsive device (PRD) is to provide unbiased baseline data when not being 

influenced by mental intention. 

 

The corrected random outputs from each generator are further processed in two paths. One is the 

usual bias, which is a measure of the fraction of ones to total bits, and the other is autocorrelation, 

which is derived by converting the first-order autocorrelation into a bias contained in a converted 

output bit stream that is directly proportional to the autocorrelation. Each of these bit streams is 

passed separately through a bias amplifier and the resulting amplified streams are combined with 

other bit streams of the same kind. The combined streams are further amplified until the bias and 

autocorrelation bit streams are reduced to the desired output bit rate. 

 

 

 
 

 Fig. 5  PsiDrive in Enclosure 
 

 

 
 

 Fig. 6  PsiDrive PCB – 6.4 GHz 
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The second-level device in this series, Model 

PRD 7 x32, is based on the largest Cyclone III 

FPGA, the EP3C120F484C8N with 118,088 

LE to produce a combined TRNG generation 

rate of 204.8 GHz. The increased generation 

rate is accomplished using the same generator 

design as in the PsiDrive with 32 times the 

number of generators. 

 

 

 

 

 

 

 

 
Fig. 7  PRD 7 x32 PCB. – 204.8 GHz. Active cooling 

of the FPGA is required due to high power density. 

 

 

The third generation in the series, Model PRD 

8 x128, is also based on the EP3C120F484C8N. 

In this case, five FPGA’s are employed with 

four of them dedicated to generation and bit 

stream processing. The fifth FPGA controls and 

monitors the four generator IC’s and combines 

their outputs into one bias and one 

autocorrelation stream, and interfaces with the 

USB I/O chip. The total PRD 8 generation rate 

is 819.2 GHz. 

 

 

 

 

 

 

 
Fig. 8  PRD 8 PCB – 819.2 GHz. Shown without heat 

sinks. 
 

PRD Baseline Testing 

 

A large number of baseline tests were run on the PRD separately and also processed through the 

PsiTrainer software. The PRD hardware produces raw random bits at a rate of 891.2 GHz. This 

extremely high generation rate is accomplished by combining the outputs of 4096 individual 

generators each operating at 200 MHz. The output of each generator is passed through an LFSR 

whitening filter (randomness corrector), which reduces bias and first-order autocorrelation defects 

to less than 10 ppb. At this point each corrected generator output is used to produce two streams: 

the first is the unaltered stream representing the bias source, and the second is the bias source 

passed through a converter, which converts first-order autocorrelation into a bias in the 
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output equal in size to the autocorrelation. The bias and autocorrelation source streams are 

passed separately through several layers of bias amplification, finally resulting in two 

output streams at 250 Kbps each. The bias and autocorrelation of the output streams have 

been tested continuously up to hundreds of Gbits. One example was a test to 65.3 Gbits on 

each output stream. The combined raw source streams are divided by a factor of 3,276,800 

in the bias amplification process so the number of raw bits tested was N = 2.14 x 1017 bits. 

The z-scores for bias and first-order autocorrelation for both the bias and autocorrelation 

output streams were nominal: 

 

Bias Stream – bias   1st order AC                    Autocorrelation Stream – bias   1st order AC 

z-score           1.02       -1.08                                                                     0.70       -1.49 

 

The 95% confidence intervals for bias and autocorrelation with respect to the corrected 

source streams is: 

 

91024.4
96.1 −=
N

 14. 

 

The output steams are passed through the PRDCore.dll6 to the PsiTrainer where they are 

further processed to produce five binary bits per trial at a rate of about 25 per second, which 

produces one final output bit by majority-voting the five sub-trial bits. The results of the 

trial as well as the five sub-trial bits are subsequently stored in a data file. Majority voting 

is used here to average out the rather large variations in trial generation times that would 

result if a single output were used per trial. 

 

Baseline testing is an automated processing and storage of the sub-trial and trial output 

bits. Baseline tests are expected to be unobserved, and no operator effort is required or 

desired. The following plot of autocorrelation was produced from a baseline series of 

418,104 trials. 

 

 

                                                 
6 The PRDCore.dll is our software interface for various sources of random bits, including all our PRD models, 

a specially designed PCQNG (software-enabled PC-based TRNG) and a high quality PRNG. The dll also 

performs data buffering, certain processing and housekeeping tasks. 
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    Fig. 9 

Figure 9 show the z-scores for the first 64 autocorrelation orders of a baseline series. The 

series was started within 1 minute of turning on the PRD and was continued for a total of 

418,104 trials. The data analyzed was the sequence of five sub-trial bits for each trial 

totaling 2,090,520 bits. The grey dots represent the first 250 trials (1,250 sub-trial bits) and 

the black dots represent the complete series. The standard deviation of each set of 64 z-

scores was 0.996 and 1.014 for the first 250 and all trials respectively. Expected values are 

1.0 for normally distributed z-scores. 

 

 

Representative bias statistics for baseline testing (same data as used for Figure 9): 

 

First 250 trials (1,250 sub-trial bits): mean, 0.4952; z-score, -0.339 

First 250 trial bits: mean, 0.468; z-score, -1.012 

All trials (2,090,520 sub-trial bits): mean, 0.5003329315; z-score, +0.963 

All 418,104 trial bits: mean, 0.5002367832; z-score, +0.306 

 

These bias and autocorrelation statistics are consistent with the assumption of unbiased and 

uncorrelated trials, with no indication of initial or “warm-up” effects. 
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Conclusion 

 
We provide several new mathematical tools for modeling and designing hardware devices 

for responding to the direct influence of mental intention. Tests over a ten-year period using 

devices with generation rates of one gigabit per second up to nearly one terabit per second 

seem to show a predictable increase in ultimate output hit rate that closely follows 

theoretical curves describing bias amplifiers based on bounded random walks. These 

theoretical equations also imply the possibility of reaching an ultimate hit rate arbitrarily 

close to 100 percent, although other factors relating to the psychology of a subject’s belief 

system or our lack of understanding of the underlying mechanism involved in anomalous 

mental effects could certainly thwart this seemingly improbable result. Careful analysis of 

intermediate or sub-trial results tend to show the mental effects do not manifest strictly as 

a force-like or per-bit effect, but rather as a more complex combination of effects which 

depend on how the data is analyzed and used during a trial. This is reminiscent of quantum 

mechanical measurements in general, and seems to hint at why it has been so difficult to 

describe and reproduce anomalous mental effects in many research laboratories over the 

years. 

 

Based on our empirical estimate of input bit effect size of about 1.5 ppm (p(1)=0.5000075 

for “High” intention), a 99 percent correct hit rate should be possible with a one terabit 

sample size, corresponding to a 5 THz true random generation rate and a trial duration of 

200ms. This is only about a factor of six faster than our single fastest generator, so we are 

confident such a rate is achievable using only current technologies.7 One derived equation 

shows the importance of input effect size on the number of bits required in each 

measurement, being inversely proportional to ES2. Future research will be focused on 

pushing the ultimate output hit rate by a “brute force” approach of increasing generation 

rate to the multi-Terahertz level, along with the considerably less obvious attempts to 

improve input bit ES. In addition to these approaches, it seems likely there are alternative 

algorithms that could simultaneously address the issue of unequal trial duration of the 

random walk bias amplifier and remain highly statistical efficient at high hit rates. 

                                                 
7 At the time of this writing we are testing with an aggregate 2.5 Tbps generator. Preliminary results are 

consistent with those expected from the bounds indicated in Figure 3 for 500 Gbits per 200 ms trial. 
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APPENDIX A 

 
Following is a Mathematica program for calculating the natural log of the Binomial[n, k]. 

lnf[xx] is a routine for calculating the natural log of xx!. This function is further used in 

the equation, Ln[Bin[n, k]]=Ln[n!]-Ln[k!]-Ln[(n-k)!], to calculate the natural log of the 

desired binomial function.(15) 

 

cof={76.18009172947146,-86.50532032941677,24.01409824083091, 

-1.231739572450155,1.208650973866179 10^-3,-5.395239384953 10^-6}; 

 

lnf[xx_]:= (x1=xx+1.0; (*calculate Ln[xx!]*) 

   If[x1≤1.,0., y=x=x1; tmp=x+5.5-(x+.5)*Log[x+5.5]; 

   ser=1.000000000190015; Do[(y=y+1.0; ser=ser+cof[[j+1]]/y), {j,0,5}]; 

   Log[2.5066282746310005*ser/x]-tmp]) 

 

lnbin[n_,k_]:= If[k==0.,0.,lnf[n]-lnf[k]-lnf[n-k]] (*calculate Ln[Binomial[n,k]]*) 

 

 

 

 

APPENDIX B 
 

Additional useful equations: 

 








 −







 −
=

p

p
Ln

Pout

Pout
Lnn
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where, n, as in equation 1, is the number of positions in the random walk required to 

produce Pout from the given p. 

 

The drift velocity of the random walker is p+- p-. That is equal to p - (1 - p), which simplifies 

to 2p-1, which is equal to the ES of the input bits. Consequently, for a large HR, the number 

of steps to the bound converges approximately to: 

 

ESnN   16. 
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